|
1
|
|
|
import unittest |
|
2
|
|
|
|
|
3
|
|
|
from numpy.random import normal, random |
|
4
|
|
|
|
|
5
|
|
|
from pysie.stats.distributions import MeanSamplingDistribution, DistributionFamily, ProportionSamplingDistribution, \ |
|
6
|
|
|
MeanDiffSamplingDistribution, ProportionDiffSamplingDistribution |
|
7
|
|
|
from pysie.stats.samples import Sample, SampleDistribution |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
class MeanSamplingDistributionUnitTest(unittest.TestCase): |
|
11
|
|
|
def test_confidence_interval_with_sample_stats_normal(self): |
|
12
|
|
|
sample_mean = 0 |
|
13
|
|
|
sample_sd = 1 |
|
14
|
|
|
sample_size = 31 |
|
15
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_mean=sample_mean, sample_sd=sample_sd, |
|
16
|
|
|
sample_size=sample_size) |
|
17
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
|
18
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
19
|
|
|
+ ', standard_error=' + str(sampling_distribution.standard_error) + ')') |
|
20
|
|
View Code Duplication |
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
|
|
|
|
|
21
|
|
|
|
|
22
|
|
|
def test_confidence_interval_with_sample_normal(self): |
|
23
|
|
|
mu = 0.0 |
|
24
|
|
|
sigma = 1.0 |
|
25
|
|
|
sample_size = 31 |
|
26
|
|
|
sample = Sample() |
|
27
|
|
|
|
|
28
|
|
|
for i in range(sample_size): |
|
29
|
|
|
sample.add_numeric(normal(mu, sigma)) |
|
30
|
|
|
|
|
31
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_distribution=SampleDistribution(sample)) |
|
32
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
|
33
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
34
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
35
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
36
|
|
|
|
|
37
|
|
|
def test_confidence_interval_with_sample_stats_student(self): |
|
38
|
|
|
sample_mean = 0 |
|
39
|
|
|
sample_sd = 1 |
|
40
|
|
|
sample_size = 29 |
|
41
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_mean=sample_mean, sample_sd=sample_sd, |
|
42
|
|
|
sample_size=sample_size) |
|
43
|
|
View Code Duplication |
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
|
|
|
|
|
|
44
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
45
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
46
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
47
|
|
|
|
|
48
|
|
|
def test_confidence_interval_with_sample_student(self): |
|
49
|
|
|
mu = 0.0 |
|
50
|
|
|
sigma = 1.0 |
|
51
|
|
|
sample_size = 29 |
|
52
|
|
|
sample = Sample() |
|
53
|
|
|
|
|
54
|
|
|
for i in range(sample_size): |
|
55
|
|
|
sample.add_numeric(normal(mu, sigma)) |
|
56
|
|
|
|
|
57
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_distribution=SampleDistribution(sample)) |
|
58
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
|
59
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
60
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
61
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
62
|
|
|
|
|
63
|
|
|
|
|
64
|
|
|
class MeanDiffSamplingDistributionUnitTest(unittest.TestCase): |
|
65
|
|
|
def test_confidence_interval_with_sample_stats_normal(self): |
|
66
|
|
|
grp1_sample_mean = 0 |
|
67
|
|
|
grp1_sample_sd = 1 |
|
68
|
|
|
grp1_sample_size = 31 |
|
69
|
|
|
grp2_sample_mean = 0.001 |
|
70
|
|
|
grp2_sample_sd = 2.1 |
|
71
|
|
|
grp2_sample_size = 36 |
|
72
|
|
|
sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_mean=grp1_sample_mean, |
|
73
|
|
|
grp1_sample_sd=grp1_sample_sd, |
|
74
|
|
View Code Duplication |
grp1_sample_size=grp1_sample_size, |
|
|
|
|
|
|
75
|
|
|
grp2_sample_mean=grp2_sample_mean, |
|
76
|
|
|
grp2_sample_sd=grp2_sample_sd, |
|
77
|
|
|
grp2_sample_size=grp2_sample_size) |
|
78
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
|
79
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
80
|
|
|
+ ', standard_error=' + str(sampling_distribution.standard_error) + ')') |
|
81
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
82
|
|
|
|
|
83
|
|
|
def test_confidence_interval_with_sample_normal(self): |
|
84
|
|
|
grp1_mu = 0.0 |
|
85
|
|
|
grp1_sigma = 1.0 |
|
86
|
|
|
grp1_sample_size = 31 |
|
87
|
|
|
grp1_sample = Sample() |
|
88
|
|
|
|
|
89
|
|
|
grp2_mu = 0.09 |
|
90
|
|
|
grp2_sigma = 2.0 |
|
91
|
|
|
grp2_sample_size = 36 |
|
92
|
|
|
grp2_sample = Sample() |
|
93
|
|
|
|
|
94
|
|
|
for i in range(grp1_sample_size): |
|
95
|
|
|
grp1_sample.add_numeric(normal(grp1_mu, grp1_sigma)) |
|
96
|
|
|
|
|
97
|
|
|
for i in range(grp2_sample_size): |
|
98
|
|
|
grp2_sample.add_numeric(normal(grp2_mu, grp2_sigma)) |
|
99
|
|
|
|
|
100
|
|
View Code Duplication |
sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_distribution=SampleDistribution(grp1_sample), |
|
|
|
|
|
|
101
|
|
|
grp2_sample_distribution=SampleDistribution(grp2_sample)) |
|
102
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
|
103
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
104
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
105
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
106
|
|
|
|
|
107
|
|
|
def test_confidence_interval_with_sample_stats_student(self): |
|
108
|
|
|
grp1_sample_mean = 0 |
|
109
|
|
|
grp1_sample_sd = 1 |
|
110
|
|
|
grp1_sample_size = 29 |
|
111
|
|
|
grp2_sample_mean = 0.001 |
|
112
|
|
|
grp2_sample_sd = 1.3 |
|
113
|
|
|
grp2_sample_size = 24 |
|
114
|
|
|
sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_mean=grp1_sample_mean, |
|
115
|
|
|
grp1_sample_sd=grp1_sample_sd, |
|
116
|
|
|
grp1_sample_size=grp1_sample_size, |
|
117
|
|
|
grp2_sample_mean=grp2_sample_mean, |
|
118
|
|
|
grp2_sample_sd=grp2_sample_sd, |
|
119
|
|
|
grp2_sample_size=grp2_sample_size) |
|
120
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
|
121
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
122
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
123
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
124
|
|
|
|
|
125
|
|
|
def test_confidence_interval_with_sample_student(self): |
|
126
|
|
|
grp1_mu = 0.0 |
|
127
|
|
|
grp1_sigma = 1.0 |
|
128
|
|
|
grp1_sample_size = 29 |
|
129
|
|
|
grp1_sample = Sample() |
|
130
|
|
|
grp2_mu = 0.08 |
|
131
|
|
|
grp2_sigma = 1.1 |
|
132
|
|
|
grp2_sample_size = 27 |
|
133
|
|
|
grp2_sample = Sample() |
|
134
|
|
|
|
|
135
|
|
|
for i in range(grp1_sample_size): |
|
136
|
|
|
grp1_sample.add_numeric(normal(grp1_mu, grp1_sigma)) |
|
137
|
|
|
for i in range(grp2_sample_size): |
|
138
|
|
|
grp2_sample.add_numeric(normal(grp2_mu, grp2_sigma)) |
|
139
|
|
|
|
|
140
|
|
|
sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_distribution=SampleDistribution(grp1_sample), |
|
141
|
|
|
grp2_sample_distribution=SampleDistribution(grp2_sample)) |
|
142
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
|
143
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
144
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
145
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
146
|
|
|
|
|
147
|
|
|
|
|
148
|
|
|
class ProportionSamplingDistributionUnitTest(unittest.TestCase): |
|
149
|
|
|
def test_confidence_interval_with_sample_stats_normal(self): |
|
150
|
|
|
sample_proportion = 0.6 |
|
151
|
|
|
sample_size = 31 |
|
152
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_proportion=sample_proportion, |
|
153
|
|
|
sample_size=sample_size) |
|
154
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
|
155
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
156
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
157
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
158
|
|
|
|
|
159
|
|
|
def test_confidence_interval_with_sample_normal(self): |
|
160
|
|
|
sample = Sample() |
|
161
|
|
|
|
|
162
|
|
|
for i in range(100): |
|
163
|
|
|
if random() <= 0.6: |
|
164
|
|
|
sample.add_category("OK") |
|
165
|
|
|
else: |
|
166
|
|
|
sample.add_category("CANCEL") |
|
167
|
|
|
|
|
168
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_distribution=SampleDistribution(sample, |
|
169
|
|
|
categorical_value="OK")) |
|
170
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
|
171
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
172
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
173
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
174
|
|
|
|
|
175
|
|
|
def test_confidence_interval_with_sample_stats_simulation(self): |
|
176
|
|
|
sample_proportion = 0.6 |
|
177
|
|
|
sample_size = 10 |
|
178
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_proportion=sample_proportion, |
|
179
|
|
|
sample_size=sample_size) |
|
180
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.simulation) |
|
181
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
182
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
183
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
184
|
|
|
|
|
185
|
|
|
def test_confidence_interval_with_sample_simulation(self): |
|
186
|
|
|
sample = Sample() |
|
187
|
|
|
|
|
188
|
|
|
for i in range(10): |
|
189
|
|
|
if random() <= 0.6: |
|
190
|
|
|
sample.add_category("OK") |
|
191
|
|
|
else: |
|
192
|
|
|
sample.add_category("CANCEL") |
|
193
|
|
|
|
|
194
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_distribution=SampleDistribution(sample, |
|
195
|
|
|
categorical_value="OK")) |
|
196
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.simulation) |
|
197
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
198
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
199
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
200
|
|
|
|
|
201
|
|
|
|
|
202
|
|
|
class ProportionDiffSamplingDistributionUnitTest(unittest.TestCase): |
|
203
|
|
|
def test_confidence_interval_with_sample_stats_normal(self): |
|
204
|
|
|
grp1_sample_proportion = 0.6 |
|
205
|
|
|
grp1_sample_size = 31 |
|
206
|
|
|
grp2_sample_proportion = 0.51 |
|
207
|
|
|
grp2_sample_size = 32 |
|
208
|
|
|
sampling_distribution = ProportionDiffSamplingDistribution(grp1_sample_proportion=grp1_sample_proportion, |
|
209
|
|
|
grp1_sample_size=grp1_sample_size, |
|
210
|
|
|
grp2_sample_proportion=grp2_sample_proportion, |
|
211
|
|
|
grp2_sample_size=grp2_sample_size) |
|
212
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
|
213
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
214
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
215
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
216
|
|
|
|
|
217
|
|
View Code Duplication |
def test_confidence_interval_with_sample_normal(self): |
|
|
|
|
|
|
218
|
|
|
grp1_sample = Sample() |
|
219
|
|
|
grp2_sample = Sample() |
|
220
|
|
|
|
|
221
|
|
|
for i in range(100): |
|
222
|
|
|
if random() <= 0.6: |
|
223
|
|
|
grp1_sample.add_category("OK") |
|
224
|
|
|
else: |
|
225
|
|
|
grp1_sample.add_category("CANCEL") |
|
226
|
|
|
|
|
227
|
|
|
for i in range(100): |
|
228
|
|
|
if random() <= 0.61: |
|
229
|
|
|
grp2_sample.add_category("OK") |
|
230
|
|
|
else: |
|
231
|
|
|
grp2_sample.add_category("CANCEL") |
|
232
|
|
|
|
|
233
|
|
|
sampling_distribution = ProportionDiffSamplingDistribution(grp1_sample_distribution=SampleDistribution( |
|
234
|
|
|
grp1_sample, categorical_value="OK"), |
|
235
|
|
|
grp2_sample_distribution=SampleDistribution( |
|
236
|
|
|
grp2_sample, categorical_value="OK")) |
|
237
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
|
238
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
239
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
240
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
241
|
|
|
|
|
242
|
|
|
def test_confidence_interval_with_sample_stats_simulation(self): |
|
243
|
|
|
grp1_sample_proportion = 0.6 |
|
244
|
|
|
grp1_sample_size = 10 |
|
245
|
|
|
grp2_sample_proportion = 0.61 |
|
246
|
|
|
grp2_sample_size = 9 |
|
247
|
|
|
sampling_distribution = ProportionDiffSamplingDistribution(grp1_sample_proportion=grp1_sample_proportion, |
|
248
|
|
|
grp1_sample_size=grp1_sample_size, |
|
249
|
|
|
grp2_sample_proportion=grp2_sample_proportion, |
|
250
|
|
|
grp2_sample_size=grp2_sample_size |
|
251
|
|
|
) |
|
252
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.simulation) |
|
253
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
254
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
255
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
256
|
|
|
|
|
257
|
|
View Code Duplication |
def test_confidence_interval_with_sample_simulation(self): |
|
|
|
|
|
|
258
|
|
|
grp1_sample = Sample() |
|
259
|
|
|
grp2_sample = Sample() |
|
260
|
|
|
|
|
261
|
|
|
for i in range(10): |
|
262
|
|
|
if random() <= 0.6: |
|
263
|
|
|
grp1_sample.add_category("OK") |
|
264
|
|
|
else: |
|
265
|
|
|
grp1_sample.add_category("CANCEL") |
|
266
|
|
|
|
|
267
|
|
|
for i in range(9): |
|
268
|
|
|
if random() <= 0.61: |
|
269
|
|
|
grp2_sample.add_category("OK") |
|
270
|
|
|
else: |
|
271
|
|
|
grp2_sample.add_category("CANCEL") |
|
272
|
|
|
|
|
273
|
|
|
sampling_distribution = ProportionDiffSamplingDistribution( |
|
274
|
|
|
grp1_sample_distribution=SampleDistribution(grp1_sample, |
|
275
|
|
|
categorical_value="OK"), |
|
276
|
|
|
grp2_sample_distribution=SampleDistribution( |
|
277
|
|
|
grp2_sample, |
|
278
|
|
|
categorical_value="OK") |
|
279
|
|
|
) |
|
280
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.simulation) |
|
281
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
|
282
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
283
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
284
|
|
|
|
|
285
|
|
|
|
|
286
|
|
|
if __name__ == '__main__': |
|
287
|
|
|
unittest.main() |
|
288
|
|
|
|