|
1
|
|
|
import argparse |
|
2
|
|
|
import logging |
|
3
|
|
|
from pathlib import Path |
|
4
|
|
|
|
|
5
|
|
|
import numpy as np |
|
6
|
|
|
|
|
7
|
|
|
from asgardpy.analysis import AsgardpyAnalysis |
|
8
|
|
|
from asgardpy.config import AsgardpyConfig, write_asgardpy_model_to_file |
|
9
|
|
|
from asgardpy.stats import ( |
|
10
|
|
|
check_model_preference_aic, |
|
11
|
|
|
copy_target_config, |
|
12
|
|
|
fetch_all_analysis_fit_info, |
|
13
|
|
|
get_model_config_files, |
|
14
|
|
|
tabulate_best_fit_stats, |
|
15
|
|
|
) |
|
16
|
|
|
|
|
17
|
|
|
log = logging.getLogger(__name__) |
|
18
|
|
|
|
|
19
|
|
|
parser = argparse.ArgumentParser(description="Get preferred best-fit spectral model") |
|
20
|
|
|
|
|
21
|
|
|
parser.add_argument( |
|
22
|
|
|
"--config", |
|
23
|
|
|
"-c", |
|
24
|
|
|
help="Path to the config file", |
|
25
|
|
|
) |
|
26
|
|
|
|
|
27
|
|
|
parser.add_argument("--ebl-scale-factor", "-e", help="Value of EBL Norm Scale Factor", default=1.0, type=float) |
|
28
|
|
|
|
|
29
|
|
|
parser.add_argument( |
|
30
|
|
|
"--ebl-model-name", |
|
31
|
|
|
"-m", |
|
32
|
|
|
help="Name of EBL model as used by Gammapy", |
|
33
|
|
|
default="dominguez", |
|
34
|
|
|
type=str, |
|
35
|
|
|
) |
|
36
|
|
|
|
|
37
|
|
|
parser.add_argument( |
|
38
|
|
|
"--write-config", |
|
39
|
|
|
help="Boolean to write the best-fit model into a separate file.", |
|
40
|
|
|
default=True, |
|
41
|
|
|
type=bool, |
|
42
|
|
|
) |
|
43
|
|
|
|
|
44
|
|
|
|
|
45
|
|
|
def fetch_all_analysis_objects(main_config, spec_model_temp_files, ebl_scale_factor, ebl_model_name): |
|
46
|
|
|
"""For a list of spectral models, initiate AsgardpyAnalysis objects.""" |
|
47
|
|
|
main_analysis_list = {} |
|
48
|
|
|
spec_models_list = [] |
|
49
|
|
|
|
|
50
|
|
|
for temp in spec_model_temp_files: |
|
51
|
|
|
temp_model = AsgardpyAnalysis(main_config) |
|
52
|
|
|
temp_model.config.target.models_file = temp |
|
53
|
|
|
|
|
54
|
|
|
temp_model_2 = AsgardpyAnalysis(temp_model.config) |
|
55
|
|
|
|
|
56
|
|
|
copy_target_config(temp_model, temp_model_2) |
|
57
|
|
|
|
|
58
|
|
|
if ebl_scale_factor != 1.0: |
|
59
|
|
|
temp_model_2.config.target.components[0].spectral.ebl_abs.alpha_norm = ebl_scale_factor |
|
60
|
|
|
|
|
61
|
|
|
if ebl_model_name != "dominguez": |
|
62
|
|
|
temp_model_2.config.target.components[0].spectral.ebl_abs.reference = ebl_model_name.replace("_", "-") |
|
63
|
|
|
else: |
|
64
|
|
|
temp_model_2.config.target.components[ |
|
65
|
|
|
0 |
|
66
|
|
|
].spectral.ebl_abs.reference = temp_model.config.target.components[0].spectral.ebl_abs.reference |
|
67
|
|
|
|
|
68
|
|
|
spec_tag = temp.name.split(".")[0].split("_")[-1] |
|
69
|
|
|
spec_models_list.append(spec_tag) |
|
70
|
|
|
main_analysis_list[spec_tag] = {} |
|
71
|
|
|
|
|
72
|
|
|
main_analysis_list[spec_tag]["Analysis"] = temp_model_2 |
|
73
|
|
|
|
|
74
|
|
|
spec_models_list = np.array(spec_models_list) |
|
75
|
|
|
|
|
76
|
|
|
return main_analysis_list, spec_models_list |
|
77
|
|
|
|
|
78
|
|
|
|
|
79
|
|
|
def get_best_preferred_model_lrt(best_sp_idx_lrt, pref_over_pl_chi2_list, spec_models_list, PL_idx, log): |
|
80
|
|
|
""" |
|
81
|
|
|
From a list of a given spectral model's preference over PL model as per LRT, |
|
82
|
|
|
get the index of the best spectral model and write appropriate logs. |
|
83
|
|
|
""" |
|
84
|
|
|
for idx in best_sp_idx_lrt: |
|
85
|
|
|
if pref_over_pl_chi2_list[idx] > 5: |
|
86
|
|
|
sp_idx_lrt = idx |
|
87
|
|
|
log.info("Best preferred spectral model over PL is %s", spec_models_list[idx]) |
|
88
|
|
|
else: |
|
89
|
|
|
sp_idx_lrt = PL_idx |
|
90
|
|
|
log.info("No other model preferred over PL") |
|
91
|
|
|
return sp_idx_lrt, log |
|
|
|
|
|
|
92
|
|
|
|
|
93
|
|
|
|
|
94
|
|
|
def get_best_preferred_model_aic(best_sp_idx_aic, list_rel_p, spec_models_list, fit_success_list, PL_idx, log): |
|
95
|
|
|
""" |
|
96
|
|
|
From a list of a given spectral model's relative p-value from a list of |
|
97
|
|
|
spectral models, as per AIC, get the index of the best spectral model and |
|
98
|
|
|
write appropriate logs. |
|
99
|
|
|
""" |
|
100
|
|
|
for idx in best_sp_idx_aic: |
|
101
|
|
|
if list_rel_p[idx] > 0.95: |
|
102
|
|
|
sp_idx_aic = idx |
|
103
|
|
|
log.info("Best preferred spectral model is %s", spec_models_list[fit_success_list][idx]) |
|
104
|
|
|
else: |
|
105
|
|
|
sp_idx_aic = PL_idx |
|
106
|
|
|
log.info("No other model preferred, hence PL is selected") |
|
107
|
|
|
|
|
108
|
|
|
return sp_idx_aic, log |
|
|
|
|
|
|
109
|
|
|
|
|
110
|
|
|
|
|
111
|
|
|
def main(): |
|
112
|
|
|
args = parser.parse_args() |
|
113
|
|
|
|
|
114
|
|
|
main_config = AsgardpyConfig.read(args.config) |
|
115
|
|
|
config_path = Path(args.config) |
|
116
|
|
|
config_path_file_name = config_path.name.split(".")[0] |
|
117
|
|
|
target_source_name = main_config.target.source_name |
|
118
|
|
|
|
|
119
|
|
|
steps_list = [] |
|
120
|
|
|
for s in main_config.general.steps: |
|
121
|
|
|
if s != "flux-points": |
|
122
|
|
|
steps_list.append(s) |
|
123
|
|
|
log.info("Target source is: %s", target_source_name) |
|
|
|
|
|
|
124
|
|
|
|
|
125
|
|
|
spec_model_temp_files = get_model_config_files(["lp", "bpl", "ecpl", "pl", "eclp", "sbpl"]) |
|
126
|
|
|
|
|
127
|
|
|
main_analysis_list, spec_models_list = fetch_all_analysis_objects( |
|
128
|
|
|
main_config, spec_model_temp_files, args.ebl_scale_factor, args.ebl_model_name |
|
129
|
|
|
) |
|
130
|
|
|
|
|
131
|
|
|
# Run Analysis Steps till Fit |
|
132
|
|
|
PL_idx = 0 |
|
133
|
|
|
|
|
134
|
|
|
for i, tag in enumerate(spec_models_list): |
|
135
|
|
|
log.info("Spectral model being tested: %s", tag) |
|
136
|
|
|
|
|
137
|
|
|
main_analysis_list[tag]["Analysis"].run(steps_list) |
|
138
|
|
|
|
|
139
|
|
|
if tag == "pl": |
|
140
|
|
|
PL_idx = i |
|
141
|
|
|
|
|
142
|
|
|
fit_success_list, stat_list, dof_list, pref_over_pl_chi2_list = fetch_all_analysis_fit_info( |
|
143
|
|
|
main_analysis_list, spec_models_list |
|
144
|
|
|
) |
|
145
|
|
|
|
|
146
|
|
|
# If any spectral model has at least 5 sigmas preference over PL |
|
147
|
|
|
best_sp_idx_lrt = np.nonzero(pref_over_pl_chi2_list == np.nanmax(pref_over_pl_chi2_list))[0] |
|
148
|
|
|
sp_idx_lrt, log = get_best_preferred_model_lrt( |
|
149
|
|
|
best_sp_idx_lrt, |
|
150
|
|
|
pref_over_pl_chi2_list, |
|
151
|
|
|
spec_models_list, |
|
152
|
|
|
PL_idx, |
|
153
|
|
|
log, |
|
154
|
|
|
) |
|
155
|
|
|
|
|
156
|
|
|
list_rel_p = check_model_preference_aic(stat_list, dof_list) |
|
157
|
|
|
|
|
158
|
|
|
best_sp_idx_aic = np.nonzero(list_rel_p == np.nanmax(list_rel_p))[0] |
|
159
|
|
|
|
|
160
|
|
|
sp_idx_aic, log = get_best_preferred_model_aic( |
|
161
|
|
|
best_sp_idx_aic, |
|
162
|
|
|
list_rel_p, |
|
163
|
|
|
spec_models_list, |
|
164
|
|
|
fit_success_list, |
|
165
|
|
|
PL_idx, |
|
166
|
|
|
log, |
|
167
|
|
|
) |
|
168
|
|
|
|
|
169
|
|
|
stats_table = tabulate_best_fit_stats(spec_models_list, fit_success_list, main_analysis_list, list_rel_p) |
|
170
|
|
|
|
|
171
|
|
|
stats_table.meta["Target source name"] = target_source_name |
|
172
|
|
|
stats_table.meta["EBL model"] = args.ebl_model_name |
|
173
|
|
|
stats_table.meta["EBL scale factor"] = args.ebl_scale_factor |
|
174
|
|
|
|
|
175
|
|
|
file_name = f"{config_path_file_name}_{args.ebl_model_name}_{args.ebl_scale_factor}_fit_stats.ecsv" |
|
176
|
|
|
stats_table.write( |
|
177
|
|
|
main_config.general.outdir / file_name, |
|
178
|
|
|
format="ascii.ecsv", |
|
179
|
|
|
overwrite=True, |
|
180
|
|
|
) |
|
181
|
|
|
|
|
182
|
|
|
if args.write_config: |
|
183
|
|
|
log.info("Write the spectral model") |
|
184
|
|
|
|
|
185
|
|
|
for idx, name in zip([sp_idx_lrt, sp_idx_aic], ["lrt", "aic"], strict=False): |
|
186
|
|
|
tag = spec_models_list[fit_success_list][idx] |
|
187
|
|
|
|
|
188
|
|
|
path = config_path.parent / f"{config_path_file_name}_model_most_pref_{name}.yaml" |
|
189
|
|
|
|
|
190
|
|
|
write_asgardpy_model_to_file( |
|
191
|
|
|
gammapy_model=main_analysis_list[tag]["Analysis"].final_model[0], output_file=path |
|
192
|
|
|
) |
|
193
|
|
|
|
|
194
|
|
|
|
|
195
|
|
|
if __name__ == "__main__": |
|
196
|
|
|
main() |
|
197
|
|
|
|