|
1
|
|
|
""" |
|
2
|
|
|
Main AsgardpyConfig Generator Module |
|
3
|
|
|
""" |
|
4
|
|
|
|
|
5
|
|
|
import json |
|
6
|
|
|
import logging |
|
7
|
|
|
import os |
|
8
|
|
|
from enum import Enum |
|
9
|
|
|
from pathlib import Path |
|
10
|
|
|
|
|
11
|
|
|
import yaml |
|
12
|
|
|
from gammapy.modeling.models import CompoundSpectralModel |
|
13
|
|
|
from gammapy.utils.scripts import make_path, read_yaml |
|
14
|
|
|
|
|
15
|
|
|
from asgardpy.analysis.step_base import AnalysisStepEnum |
|
16
|
|
|
from asgardpy.base import BaseConfig, PathType |
|
17
|
|
|
from asgardpy.config.operations import ( |
|
18
|
|
|
CONFIG_PATH, |
|
19
|
|
|
check_gammapy_model, |
|
20
|
|
|
compound_model_dict_converstion, |
|
21
|
|
|
deep_update, |
|
22
|
|
|
recursive_merge_dicts, |
|
23
|
|
|
) |
|
24
|
|
|
from asgardpy.data import ( |
|
25
|
|
|
Dataset1DConfig, |
|
26
|
|
|
Dataset3DConfig, |
|
27
|
|
|
FitConfig, |
|
28
|
|
|
FluxPointsConfig, |
|
29
|
|
|
Target, |
|
30
|
|
|
) |
|
31
|
|
|
|
|
32
|
|
|
__all__ = [ |
|
33
|
|
|
"AsgardpyConfig", |
|
34
|
|
|
"GeneralConfig", |
|
35
|
|
|
"gammapy_model_to_asgardpy_model_config", |
|
36
|
|
|
"write_asgardpy_model_to_file", |
|
37
|
|
|
] |
|
38
|
|
|
|
|
39
|
|
|
log = logging.getLogger(__name__) |
|
40
|
|
|
|
|
41
|
|
|
|
|
42
|
|
|
# Other general config params |
|
43
|
|
|
class LogConfig(BaseConfig): |
|
44
|
|
|
"""Config section for main logging information.""" |
|
45
|
|
|
|
|
46
|
|
|
level: str = "info" |
|
47
|
|
|
filename: str = "" |
|
48
|
|
|
filemode: str = "w" |
|
49
|
|
|
format: str = "" |
|
50
|
|
|
datefmt: str = "" |
|
51
|
|
|
|
|
52
|
|
|
|
|
53
|
|
|
class ParallelBackendEnum(str, Enum): |
|
54
|
|
|
"""Config section for list of parallel processing backend methods.""" |
|
55
|
|
|
|
|
56
|
|
|
multi = "multiprocessing" |
|
57
|
|
|
ray = "ray" |
|
58
|
|
|
|
|
59
|
|
|
|
|
60
|
|
|
class GeneralConfig(BaseConfig): |
|
61
|
|
|
"""Config section for general information for running AsgardpyAnalysis.""" |
|
62
|
|
|
|
|
63
|
|
|
log: LogConfig = LogConfig() |
|
64
|
|
|
outdir: PathType = "None" |
|
65
|
|
|
n_jobs: int = 1 |
|
66
|
|
|
parallel_backend: ParallelBackendEnum = ParallelBackendEnum.multi |
|
67
|
|
|
steps: list[AnalysisStepEnum] = [] |
|
68
|
|
|
overwrite: bool = True |
|
69
|
|
|
stacked_dataset: bool = False |
|
70
|
|
|
|
|
71
|
|
|
|
|
72
|
|
|
def check_config(config): |
|
73
|
|
|
""" |
|
74
|
|
|
For a given object type, try to read it as an AsgardpyConfig object. |
|
75
|
|
|
""" |
|
76
|
|
|
if isinstance(config, str | Path): |
|
77
|
|
|
if Path(config).is_file(): |
|
78
|
|
|
AConfig = AsgardpyConfig.read(config) |
|
79
|
|
|
else: |
|
80
|
|
|
AConfig = AsgardpyConfig.from_yaml(config) |
|
81
|
|
|
elif isinstance(config, AsgardpyConfig): |
|
82
|
|
|
AConfig = config |
|
83
|
|
|
else: |
|
84
|
|
|
raise TypeError(f"Invalid type: {config}") |
|
85
|
|
|
|
|
86
|
|
|
return AConfig |
|
87
|
|
|
|
|
88
|
|
|
|
|
89
|
|
|
def gammapy_model_to_asgardpy_model_config(gammapy_model, asgardpy_config_file=None, recursive_merge=True): |
|
90
|
|
|
""" |
|
91
|
|
|
Read the Gammapy Models object and save it as AsgardpyConfig object. |
|
92
|
|
|
|
|
93
|
|
|
The gammapy_model object may be a YAML config filename/path/object or a |
|
94
|
|
|
Gammapy Models object itself. |
|
95
|
|
|
|
|
96
|
|
|
Return |
|
97
|
|
|
------ |
|
98
|
|
|
asgardpy_config: `asgardpy.config.generator.AsgardpyConfig` |
|
99
|
|
|
Updated AsgardpyConfig object |
|
100
|
|
|
""" |
|
101
|
|
|
|
|
102
|
|
|
models_gpy = check_gammapy_model(gammapy_model) |
|
103
|
|
|
|
|
104
|
|
|
models_gpy_dict = models_gpy.to_dict() |
|
105
|
|
|
|
|
106
|
|
|
if not asgardpy_config_file: |
|
107
|
|
|
asgardpy_config = AsgardpyConfig() # Default object |
|
108
|
|
|
# Remove any name values in the model dict |
|
109
|
|
|
models_gpy_dict["components"][0].pop("datasets_names", None) |
|
110
|
|
|
models_gpy_dict["components"][0].pop("name", None) |
|
111
|
|
|
else: |
|
112
|
|
|
asgardpy_config = check_config(asgardpy_config_file) |
|
113
|
|
|
|
|
114
|
|
|
# For EBL part only |
|
115
|
|
|
if "model1" in models_gpy_dict["components"][0]["spectral"].keys(): |
|
116
|
|
|
models_gpy_dict["components"][0]["spectral"] = compound_model_dict_converstion( |
|
117
|
|
|
models_gpy_dict["components"][0]["spectral"] |
|
118
|
|
|
) |
|
119
|
|
|
|
|
120
|
|
|
asgardpy_config_target_dict = asgardpy_config.model_dump()["target"] |
|
121
|
|
|
|
|
122
|
|
|
if recursive_merge: |
|
123
|
|
|
temp_target_dict = recursive_merge_dicts(asgardpy_config_target_dict, models_gpy_dict) |
|
124
|
|
|
else: |
|
125
|
|
|
# Use when there are nans present in the other config file, which are |
|
126
|
|
|
# the defaults in Gammapy, but NOT in Asgardpy. |
|
127
|
|
|
# E.g. test data Fermi-3fhl-crab model file |
|
128
|
|
|
temp_target_dict = deep_update(asgardpy_config_target_dict, models_gpy_dict) |
|
129
|
|
|
|
|
130
|
|
|
asgardpy_config.target = temp_target_dict |
|
131
|
|
|
|
|
132
|
|
|
return asgardpy_config |
|
133
|
|
|
|
|
134
|
|
|
|
|
135
|
|
|
def get_output_file_path(output_file, gammapy_model): |
|
136
|
|
|
""" |
|
137
|
|
|
Conditions to return a Path variable of the output_file provided and if it |
|
138
|
|
|
is not provided, create a path in the model_templates sub-folder. |
|
139
|
|
|
""" |
|
140
|
|
|
if not output_file: |
|
141
|
|
|
if isinstance(gammapy_model[0].spectral_model, CompoundSpectralModel): |
|
142
|
|
|
model_tag = gammapy_model[0].spectral_model.model1.tag[1] + "_ebl" |
|
143
|
|
|
else: |
|
144
|
|
|
model_tag = gammapy_model[0].spectral_model.tag[1] |
|
145
|
|
|
|
|
146
|
|
|
output_file = CONFIG_PATH / f"model_templates/model_template_{model_tag}.yaml" |
|
147
|
|
|
os.path.expandvars(output_file) |
|
148
|
|
|
else: |
|
149
|
|
|
if not isinstance(output_file, Path): |
|
150
|
|
|
output_file = Path(os.path.expandvars(output_file)) |
|
151
|
|
|
return output_file |
|
152
|
|
|
|
|
153
|
|
|
|
|
154
|
|
|
def write_asgardpy_model_to_file(gammapy_model, output_file=None, recursive_merge=True): |
|
155
|
|
|
""" |
|
156
|
|
|
Read the Gammapy Models object and save it as AsgardpyConfig YAML file |
|
157
|
|
|
containing only the Model parameters, similar to the model templates |
|
158
|
|
|
available. |
|
159
|
|
|
""" |
|
160
|
|
|
gammapy_model = check_gammapy_model(gammapy_model) |
|
161
|
|
|
|
|
162
|
|
|
asgardpy_config = gammapy_model_to_asgardpy_model_config( |
|
163
|
|
|
gammapy_model=gammapy_model[0], |
|
164
|
|
|
asgardpy_config_file=None, |
|
165
|
|
|
recursive_merge=recursive_merge, |
|
166
|
|
|
) |
|
167
|
|
|
|
|
168
|
|
|
output_file = get_output_file_path(output_file, gammapy_model) |
|
169
|
|
|
|
|
170
|
|
|
temp_ = asgardpy_config.model_dump(exclude_defaults=True) |
|
171
|
|
|
temp_["target"].pop("models_file", None) |
|
172
|
|
|
|
|
173
|
|
|
if isinstance(gammapy_model[0].spectral_model, CompoundSpectralModel): |
|
174
|
|
|
temp_["target"]["components"][0]["spectral"]["ebl_abs"]["filename"] = str( |
|
175
|
|
|
temp_["target"]["components"][0]["spectral"]["ebl_abs"]["filename"] |
|
176
|
|
|
) |
|
177
|
|
|
else: |
|
178
|
|
|
temp_["target"]["components"][0]["spectral"].pop("ebl_abs", None) |
|
179
|
|
|
|
|
180
|
|
|
yaml_ = yaml.dump( |
|
181
|
|
|
temp_, |
|
182
|
|
|
sort_keys=False, |
|
183
|
|
|
indent=4, |
|
184
|
|
|
width=80, |
|
185
|
|
|
default_flow_style=None, |
|
186
|
|
|
) |
|
187
|
|
|
|
|
188
|
|
|
output_file.write_text(yaml_) |
|
189
|
|
|
|
|
190
|
|
|
|
|
191
|
|
|
# Combine everything! |
|
192
|
|
|
class AsgardpyConfig(BaseConfig): |
|
193
|
|
|
""" |
|
194
|
|
|
Asgardpy analysis configuration, based on Gammapy Analysis Config. |
|
195
|
|
|
""" |
|
196
|
|
|
|
|
197
|
|
|
general: GeneralConfig = GeneralConfig() |
|
198
|
|
|
|
|
199
|
|
|
target: Target = Target() |
|
200
|
|
|
|
|
201
|
|
|
dataset3d: Dataset3DConfig = Dataset3DConfig() |
|
202
|
|
|
dataset1d: Dataset1DConfig = Dataset1DConfig() |
|
203
|
|
|
|
|
204
|
|
|
fit_params: FitConfig = FitConfig() |
|
205
|
|
|
flux_points_params: FluxPointsConfig = FluxPointsConfig() |
|
206
|
|
|
|
|
207
|
|
|
def __str__(self): |
|
208
|
|
|
""" |
|
209
|
|
|
Display settings in pretty YAML format. |
|
210
|
|
|
""" |
|
211
|
|
|
info = self.__class__.__name__ + "\n\n\t" |
|
212
|
|
|
data = self.to_yaml() |
|
213
|
|
|
data = data.replace("\n", "\n\t") |
|
214
|
|
|
info += data |
|
215
|
|
|
return info.expandtabs(tabsize=4) |
|
216
|
|
|
|
|
217
|
|
|
@classmethod |
|
218
|
|
|
def read(cls, path): |
|
219
|
|
|
""" |
|
220
|
|
|
Reads from YAML file. |
|
221
|
|
|
""" |
|
222
|
|
|
config = read_yaml(path) |
|
223
|
|
|
return AsgardpyConfig(**config) |
|
224
|
|
|
|
|
225
|
|
|
@classmethod |
|
226
|
|
|
def from_yaml(cls, config_str): |
|
227
|
|
|
""" |
|
228
|
|
|
Create from YAML string. |
|
229
|
|
|
""" |
|
230
|
|
|
settings = yaml.safe_load(config_str) |
|
231
|
|
|
return AsgardpyConfig(**settings) |
|
232
|
|
|
|
|
233
|
|
|
def write(self, path, overwrite=False): |
|
234
|
|
|
""" |
|
235
|
|
|
Write to YAML file. |
|
236
|
|
|
""" |
|
237
|
|
|
path = make_path(path) |
|
238
|
|
|
if path.exists() and not overwrite: |
|
239
|
|
|
raise OSError(f"File exists already: {path}") |
|
240
|
|
|
path.write_text(self.to_yaml()) |
|
241
|
|
|
|
|
242
|
|
|
def to_yaml(self): |
|
243
|
|
|
""" |
|
244
|
|
|
Convert to YAML string. |
|
245
|
|
|
""" |
|
246
|
|
|
data = json.loads(self.model_dump_json()) |
|
247
|
|
|
return yaml.dump(data, sort_keys=False, indent=4, width=80, default_flow_style=None) |
|
248
|
|
|
|
|
249
|
|
|
def set_logging(self): |
|
250
|
|
|
""" |
|
251
|
|
|
Set logging config. |
|
252
|
|
|
Calls ``logging.basicConfig``, i.e. adjusts global logging state. |
|
253
|
|
|
""" |
|
254
|
|
|
self.general.log.level = self.general.log.level.upper() |
|
255
|
|
|
logging.basicConfig(**self.general.log.model_dump()) |
|
256
|
|
|
log.info("Setting logging config: %s", self.general.log.model_dump()) |
|
257
|
|
|
|
|
258
|
|
|
def update(self, config=None, merge_recursive=False): |
|
259
|
|
|
""" |
|
260
|
|
|
Update config with provided settings. |
|
261
|
|
|
Parameters |
|
262
|
|
|
---------- |
|
263
|
|
|
config : string dict or `AsgardpyConfig` object |
|
264
|
|
|
The other configuration settings provided in dict() syntax. |
|
265
|
|
|
merge_recursive : bool |
|
266
|
|
|
Perform a recursive merge from the other config onto the parent config. |
|
267
|
|
|
|
|
268
|
|
|
Returns |
|
269
|
|
|
------- |
|
270
|
|
|
config : `AsgardpyConfig` object |
|
271
|
|
|
Updated config object. |
|
272
|
|
|
""" |
|
273
|
|
|
other = check_config(config) |
|
274
|
|
|
|
|
275
|
|
|
# Special case of when only updating target model parameters from a |
|
276
|
|
|
# separate file, where the name of the source is not provided. |
|
277
|
|
|
if other.target.components[0].name == "": |
|
278
|
|
|
merge_recursive = True |
|
279
|
|
|
|
|
280
|
|
|
if merge_recursive: |
|
281
|
|
|
config_new = recursive_merge_dicts( |
|
282
|
|
|
self.model_dump(exclude_defaults=True), other.model_dump(exclude_defaults=True) |
|
283
|
|
|
) |
|
284
|
|
|
else: |
|
285
|
|
|
config_new = deep_update( |
|
286
|
|
|
self.model_dump(exclude_defaults=True), other.model_dump(exclude_defaults=True) |
|
287
|
|
|
) |
|
288
|
|
|
return AsgardpyConfig(**config_new) |
|
289
|
|
|
|