|
1
|
|
|
import argparse |
|
2
|
|
|
import logging |
|
3
|
|
|
from pathlib import Path |
|
4
|
|
|
|
|
5
|
|
|
import numpy as np |
|
6
|
|
|
import yaml |
|
7
|
|
|
from astropy.table import QTable |
|
8
|
|
|
|
|
9
|
|
|
from asgardpy.analysis import AsgardpyAnalysis |
|
10
|
|
|
from asgardpy.config import AsgardpyConfig |
|
11
|
|
|
from asgardpy.config.generator import CONFIG_PATH |
|
12
|
|
|
from asgardpy.stats.stats import check_model_preference_aic, check_model_preference_lrt |
|
13
|
|
|
|
|
14
|
|
|
log = logging.getLogger(__name__) |
|
15
|
|
|
|
|
16
|
|
|
parser = argparse.ArgumentParser(description="Get preferred best-fit spectral model") |
|
17
|
|
|
|
|
18
|
|
|
parser.add_argument( |
|
19
|
|
|
"--config", |
|
20
|
|
|
"-c", |
|
21
|
|
|
help="Path to the config file", |
|
22
|
|
|
) |
|
23
|
|
|
|
|
24
|
|
|
# fetch options of spec models to test from user, or use all available... |
|
25
|
|
|
parser.add_argument("--ebl-scale-factor", "-e", help="Value of EBL Norm Scale Factor", default=1.0, type=float) |
|
26
|
|
|
|
|
27
|
|
|
parser.add_argument( |
|
28
|
|
|
"--ebl-model-name", |
|
29
|
|
|
"-m", |
|
30
|
|
|
help="Name of EBL model as used by Gammapy", |
|
31
|
|
|
default="dominguez", |
|
32
|
|
|
type=str, |
|
33
|
|
|
) |
|
34
|
|
|
|
|
35
|
|
|
parser.add_argument( |
|
36
|
|
|
"--write-config", |
|
37
|
|
|
help="Boolean to write the best-fit model into a separate file.", |
|
38
|
|
|
default=True, |
|
39
|
|
|
type=bool, |
|
40
|
|
|
) |
|
41
|
|
|
|
|
42
|
|
|
|
|
43
|
|
|
def get_model_config_files(select_model_tags): |
|
44
|
|
|
"""From the default model templates, select some.""" |
|
45
|
|
|
|
|
46
|
|
|
spec_model_template_files = sorted(list(CONFIG_PATH.glob("model_templates/model_template*yaml"))) |
|
47
|
|
|
|
|
48
|
|
|
spec_model_temp_files = [] |
|
49
|
|
|
|
|
50
|
|
|
for p in spec_model_template_files: |
|
51
|
|
|
tag = p.name.split(".")[0].split("_")[-1] |
|
52
|
|
|
|
|
53
|
|
|
if tag in select_model_tags: |
|
54
|
|
|
spec_model_temp_files.append(p) |
|
55
|
|
|
|
|
56
|
|
|
spec_model_temp_files = np.array(spec_model_temp_files) |
|
57
|
|
|
|
|
58
|
|
|
return spec_model_temp_files |
|
59
|
|
|
|
|
60
|
|
|
|
|
61
|
|
|
def update_config(config_1, config_2): |
|
62
|
|
|
"""From config_1 update information in config_2.""" |
|
63
|
|
|
|
|
64
|
|
|
# Have the same value of amplitude |
|
65
|
|
|
config_2.config.target.components[0].spectral.parameters[0].value = ( |
|
66
|
|
|
config_1.config.target.components[0].spectral.parameters[0].value |
|
67
|
|
|
) |
|
68
|
|
|
# Have the same value of reference/e_break energy |
|
69
|
|
|
config_2.config.target.components[0].spectral.parameters[1].value = ( |
|
70
|
|
|
config_1.config.target.components[0].spectral.parameters[1].value |
|
71
|
|
|
) |
|
72
|
|
|
# Have the same value of redshift value and EBL reference model |
|
73
|
|
|
config_2.config.target.components[0].spectral.ebl_abs.redshift = config_1.config.target.components[ |
|
74
|
|
|
0 |
|
75
|
|
|
].spectral.ebl_abs.redshift |
|
76
|
|
|
|
|
77
|
|
|
# Make sure the source names are the same |
|
78
|
|
|
config_2.config.target.source_name = config_1.config.target.source_name |
|
79
|
|
|
config_2.config.target.components[0].name = config_1.config.target.components[0].name |
|
80
|
|
|
|
|
81
|
|
|
return config_2 |
|
82
|
|
|
|
|
83
|
|
|
|
|
84
|
|
|
def fetch_all_analysis_objects(main_config, spec_model_temp_files, ebl_scale_factor, ebl_model_name): |
|
85
|
|
|
"""For a list of spectral models, initiate AsgardpyAnalysis objects.""" |
|
86
|
|
|
main_analysis_list = {} |
|
87
|
|
|
spec_models_list = [] |
|
88
|
|
|
|
|
89
|
|
|
for temp in spec_model_temp_files: |
|
90
|
|
|
temp_model = AsgardpyAnalysis(main_config) |
|
91
|
|
|
temp_model.config.target.models_file = temp |
|
92
|
|
|
|
|
93
|
|
|
temp_model_2 = AsgardpyAnalysis(temp_model.config) |
|
94
|
|
|
|
|
95
|
|
|
update_config(temp_model, temp_model_2) |
|
96
|
|
|
|
|
97
|
|
|
if ebl_scale_factor != 1.0: |
|
98
|
|
|
temp_model_2.config.target.components[0].spectral.ebl_abs.alpha_norm = ebl_scale_factor |
|
99
|
|
|
|
|
100
|
|
|
if ebl_model_name != "dominguez": |
|
101
|
|
|
temp_model_2.config.target.components[0].spectral.ebl_abs.reference = ebl_model_name.replace("_", "-") |
|
102
|
|
|
else: |
|
103
|
|
|
temp_model_2.config.target.components[ |
|
104
|
|
|
0 |
|
105
|
|
|
].spectral.ebl_abs.reference = temp_model.config.target.components[0].spectral.ebl_abs.reference |
|
106
|
|
|
|
|
107
|
|
|
spec_tag = temp.name.split(".")[0].split("_")[-1] |
|
108
|
|
|
spec_models_list.append(spec_tag) |
|
109
|
|
|
main_analysis_list[spec_tag] = {} |
|
110
|
|
|
|
|
111
|
|
|
main_analysis_list[spec_tag]["Analysis"] = temp_model_2 |
|
112
|
|
|
|
|
113
|
|
|
spec_models_list = np.array(spec_models_list) |
|
114
|
|
|
|
|
115
|
|
|
return main_analysis_list, spec_models_list |
|
116
|
|
|
|
|
117
|
|
|
|
|
118
|
|
|
def fetch_all_analysis_fit_info(main_analysis_list, spec_models_list): |
|
119
|
|
|
""" |
|
120
|
|
|
For a list of spectral models, with the AsgardpyAnalysis run till the fit |
|
121
|
|
|
step, get the relevant information for testing the model preference. |
|
122
|
|
|
""" |
|
123
|
|
|
fit_success_list = [] |
|
124
|
|
|
pref_over_pl_chi2_list = [] |
|
125
|
|
|
stat_list = [] |
|
126
|
|
|
dof_list = [] |
|
127
|
|
|
|
|
128
|
|
|
for tag in spec_models_list: |
|
129
|
|
|
dict_tag = main_analysis_list[tag]["Analysis"].instrument_spectral_info |
|
130
|
|
|
dict_pl = main_analysis_list["pl"]["Analysis"].instrument_spectral_info |
|
131
|
|
|
|
|
132
|
|
|
# Collect parameters for AIC check |
|
133
|
|
|
stat = dict_tag["best_fit_stat"] |
|
134
|
|
|
dof = dict_tag["DoF"] |
|
135
|
|
|
|
|
136
|
|
|
fit_success = main_analysis_list[tag]["Analysis"].fit_result.success |
|
137
|
|
|
|
|
138
|
|
|
fit_success_list.append(fit_success) |
|
139
|
|
|
stat_list.append(stat) |
|
140
|
|
|
dof_list.append(dof) |
|
141
|
|
|
|
|
142
|
|
|
# Checking the preference of a "nested" spectral model (observed), |
|
143
|
|
|
# over Power Law. |
|
144
|
|
|
if tag == "pl": |
|
145
|
|
|
main_analysis_list[tag]["Pref_over_pl_chi2"] = 0 |
|
146
|
|
|
main_analysis_list[tag]["Pref_over_pl_pval"] = 0 |
|
147
|
|
|
main_analysis_list[tag]["DoF_over_pl"] = 0 |
|
148
|
|
|
pref_over_pl_chi2_list.append(0) |
|
149
|
|
|
continue |
|
150
|
|
|
|
|
151
|
|
|
p_pl_x, g_pl_x, ndof_pl_x = check_model_preference_lrt( |
|
152
|
|
|
dict_pl["best_fit_stat"], |
|
153
|
|
|
dict_tag["best_fit_stat"], |
|
154
|
|
|
dict_pl["DoF"], |
|
155
|
|
|
dict_tag["DoF"], |
|
156
|
|
|
) |
|
157
|
|
|
|
|
158
|
|
|
main_analysis_list[tag]["Pref_over_pl_chi2"] = g_pl_x |
|
159
|
|
|
pref_over_pl_chi2_list.append(g_pl_x) |
|
160
|
|
|
main_analysis_list[tag]["Pref_over_pl_pval"] = p_pl_x |
|
161
|
|
|
main_analysis_list[tag]["DoF_over_pl"] = ndof_pl_x |
|
162
|
|
|
|
|
163
|
|
|
fit_success_list = np.array(fit_success_list) |
|
164
|
|
|
|
|
165
|
|
|
# Only select fit results that were successful for comparisons |
|
166
|
|
|
stat_list = np.array(stat_list)[fit_success_list] |
|
167
|
|
|
dof_list = np.array(dof_list)[fit_success_list] |
|
168
|
|
|
pref_over_pl_chi2_list = np.array(pref_over_pl_chi2_list)[fit_success_list] |
|
169
|
|
|
|
|
170
|
|
|
return fit_success_list, stat_list, dof_list, pref_over_pl_chi2_list |
|
171
|
|
|
|
|
172
|
|
|
|
|
173
|
|
|
def tabulate_best_fit_stats(spec_models_list, fit_success_list, main_analysis_list, list_rel_p): |
|
174
|
|
|
"""For a list of spectral models, tabulate the best fit information.""" |
|
175
|
|
|
|
|
176
|
|
|
fit_stats_table = [] |
|
177
|
|
|
|
|
178
|
|
|
for i, tag in enumerate(spec_models_list[fit_success_list]): |
|
179
|
|
|
info_ = main_analysis_list[tag]["Analysis"].instrument_spectral_info |
|
180
|
|
|
|
|
181
|
|
|
t = main_analysis_list[tag] |
|
182
|
|
|
|
|
183
|
|
|
ts_gof = round(info_["best_fit_stat"] - info_["max_fit_stat"], 3) |
|
184
|
|
|
t_fits = { |
|
185
|
|
|
"Spectral Model": tag.upper(), |
|
186
|
|
|
"TS of Best Fit": round(info_["best_fit_stat"], 3), |
|
187
|
|
|
"TS of Max Fit": round(info_["max_fit_stat"], 3), |
|
188
|
|
|
"TS of Goodness of Fit": ts_gof, |
|
189
|
|
|
"DoF of Fit": info_["DoF"], |
|
190
|
|
|
r"Significance ($\sigma$) of Goodness of Fit": round(info_["fit_chi2_sig"], 3), |
|
191
|
|
|
"p-value of Goodness of Fit": float(f"{info_['fit_pval']:.4g}"), |
|
192
|
|
|
"Pref over PL (chi2)": round(t["Pref_over_pl_chi2"], 3), |
|
193
|
|
|
"Pref over PL (p-value)": float(f"{t['Pref_over_pl_pval']:.4g}"), |
|
194
|
|
|
"Pref over PL (DoF)": t["DoF_over_pl"], |
|
195
|
|
|
"Relative p-value (AIC)": float(f"{list_rel_p[i]:.4g}"), |
|
196
|
|
|
} |
|
197
|
|
|
fit_stats_table.append(t_fits) |
|
198
|
|
|
stats_table = QTable(fit_stats_table) |
|
199
|
|
|
|
|
200
|
|
|
return stats_table |
|
201
|
|
|
|
|
202
|
|
|
|
|
203
|
|
|
def write_output_config_yaml(model_): |
|
204
|
|
|
"""With the selected spectral model, update a default config in yaml.""" |
|
205
|
|
|
|
|
206
|
|
|
spec_model = model_.spectral_model.model1.to_dict() |
|
207
|
|
|
|
|
208
|
|
|
temp_config = AsgardpyConfig() |
|
209
|
|
|
temp_config.target.components[0] = spec_model |
|
210
|
|
|
# Update with the spectral model info |
|
211
|
|
|
temp_ = temp_config.dict(exclude_defaults=True) |
|
212
|
|
|
|
|
213
|
|
|
# Remove some of the unnecessary keys |
|
214
|
|
|
temp_["target"].pop("models_file", None) |
|
215
|
|
|
temp_["target"]["components"][0]["spectral"].pop("ebl_abs", None) |
|
216
|
|
|
|
|
217
|
|
|
yaml_ = yaml.dump( |
|
218
|
|
|
temp_, |
|
219
|
|
|
sort_keys=False, |
|
220
|
|
|
indent=4, |
|
221
|
|
|
width=80, |
|
222
|
|
|
default_flow_style=None, |
|
223
|
|
|
) |
|
224
|
|
|
return yaml_ |
|
225
|
|
|
|
|
226
|
|
|
|
|
227
|
|
|
def main(): |
|
228
|
|
|
args = parser.parse_args() |
|
229
|
|
|
|
|
230
|
|
|
main_config = AsgardpyConfig.read(args.config) |
|
231
|
|
|
config_path = Path(args.config) |
|
232
|
|
|
config_path_file_name = config_path.name.split(".")[0] |
|
233
|
|
|
target_source_name = main_config.target.source_name |
|
234
|
|
|
|
|
235
|
|
|
steps_list = [] |
|
236
|
|
|
for s in main_config.general.steps: |
|
237
|
|
|
if s.value != "flux-points": |
|
238
|
|
|
steps_list.append(s.value) |
|
239
|
|
|
log.info("Target source is: %s", target_source_name) |
|
240
|
|
|
|
|
241
|
|
|
spec_model_temp_files = get_model_config_files(["lp", "bpl", "ecpl", "pl", "eclp", "sbpl"]) |
|
242
|
|
|
|
|
243
|
|
|
main_analysis_list, spec_models_list = fetch_all_analysis_objects( |
|
244
|
|
|
main_config, spec_model_temp_files, args.ebl_scale_factor, args.ebl_model_name |
|
245
|
|
|
) |
|
246
|
|
|
|
|
247
|
|
|
# Run Analysis Steps till Fit |
|
248
|
|
|
PL_idx = 0 |
|
249
|
|
|
|
|
250
|
|
|
for i, tag in enumerate(spec_models_list): |
|
251
|
|
|
log.info("Spectral model being tested: %s", tag) |
|
252
|
|
|
|
|
253
|
|
|
main_analysis_list[tag]["Analysis"].run(steps_list) |
|
254
|
|
|
|
|
255
|
|
|
if tag == "pl": |
|
256
|
|
|
PL_idx = i |
|
257
|
|
|
|
|
258
|
|
|
fit_success_list, stat_list, dof_list, pref_over_pl_chi2_list = fetch_all_analysis_fit_info( |
|
259
|
|
|
main_analysis_list, spec_models_list |
|
260
|
|
|
) |
|
261
|
|
|
|
|
262
|
|
|
# If any spectral model has at least 5 sigmas preference over PL |
|
263
|
|
|
best_sp_idx_lrt = np.nonzero(pref_over_pl_chi2_list == np.nanmax(pref_over_pl_chi2_list))[0] |
|
264
|
|
|
for idx in best_sp_idx_lrt: |
|
265
|
|
|
if pref_over_pl_chi2_list[idx] > 5: |
|
266
|
|
|
sp_idx_lrt = idx |
|
267
|
|
|
log.info("Best preferred spectral model over PL is %s", spec_models_list[idx]) |
|
268
|
|
|
else: |
|
269
|
|
|
sp_idx_lrt = PL_idx |
|
270
|
|
|
log.info("No other model preferred over PL") |
|
271
|
|
|
|
|
272
|
|
|
list_rel_p = check_model_preference_aic(stat_list, dof_list) |
|
273
|
|
|
|
|
274
|
|
|
best_sp_idx_aic = np.nonzero(list_rel_p == np.nanmax(list_rel_p))[0] |
|
275
|
|
|
|
|
276
|
|
|
for idx in best_sp_idx_aic: |
|
277
|
|
|
if list_rel_p[idx] > 0.95: |
|
278
|
|
|
sp_idx_aic = idx |
|
279
|
|
|
log.info("Best preferred spectral model is %s", spec_models_list[fit_success_list][idx]) |
|
280
|
|
|
else: |
|
281
|
|
|
sp_idx_aic = PL_idx |
|
282
|
|
|
log.info("No other model preferred, hence PL is selected") |
|
283
|
|
|
|
|
284
|
|
|
stats_table = tabulate_best_fit_stats(spec_models_list, fit_success_list, main_analysis_list, list_rel_p) |
|
285
|
|
|
|
|
286
|
|
|
stats_table.meta["Target source name"] = target_source_name |
|
287
|
|
|
stats_table.meta["EBL model"] = args.ebl_model_name |
|
288
|
|
|
stats_table.meta["EBL scale factor"] = args.ebl_scale_factor |
|
289
|
|
|
|
|
290
|
|
|
file_name = f"{config_path_file_name}_{args.ebl_model_name}_{args.ebl_scale_factor}_fit_stats.ecsv" |
|
291
|
|
|
stats_table.write( |
|
292
|
|
|
main_config.general.outdir / file_name, |
|
293
|
|
|
format="ascii.ecsv", |
|
294
|
|
|
overwrite=True, |
|
295
|
|
|
) |
|
296
|
|
|
|
|
297
|
|
|
if args.write_config: |
|
298
|
|
|
log.info("Write the spectral model") |
|
299
|
|
|
|
|
300
|
|
|
for idx, name in zip([sp_idx_lrt, sp_idx_aic], ["lrt", "aic"], strict=False): |
|
|
|
|
|
|
301
|
|
|
tag = spec_models_list[fit_success_list][idx] |
|
302
|
|
|
|
|
303
|
|
|
path = config_path.parent / f"{config_path_file_name}_model_most_pref_{name}.yaml" |
|
304
|
|
|
|
|
305
|
|
|
yaml_ = write_output_config_yaml(main_analysis_list[tag]["Analysis"].final_model[0]) |
|
306
|
|
|
path.write_text(yaml_) |
|
307
|
|
|
|
|
308
|
|
|
|
|
309
|
|
|
if __name__ == "__main__": |
|
310
|
|
|
main() |
|
311
|
|
|
|