1
|
|
|
import argparse |
2
|
|
|
import logging |
3
|
|
|
from pathlib import Path |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
import yaml |
7
|
|
|
from astropy.table import QTable |
8
|
|
|
|
9
|
|
|
from asgardpy.analysis import AsgardpyAnalysis |
10
|
|
|
from asgardpy.config import AsgardpyConfig |
11
|
|
|
from asgardpy.config.generator import CONFIG_PATH |
12
|
|
|
from asgardpy.stats.stats import check_model_preference_aic, check_model_preference_lrt |
13
|
|
|
|
14
|
|
|
log = logging.getLogger(__name__) |
15
|
|
|
|
16
|
|
|
parser = argparse.ArgumentParser(description="Get preferred best-fit spectral model") |
17
|
|
|
|
18
|
|
|
parser.add_argument( |
19
|
|
|
"--config", |
20
|
|
|
"-c", |
21
|
|
|
help="Path to the config file", |
22
|
|
|
) |
23
|
|
|
|
24
|
|
|
# fetch options of spec models to test from user, or use all available... |
25
|
|
|
parser.add_argument("--ebl-scale-factor", "-e", help="Value of EBL Norm Scale Factor", default=1.0, type=float) |
26
|
|
|
|
27
|
|
|
parser.add_argument( |
28
|
|
|
"--ebl-model-name", |
29
|
|
|
"-m", |
30
|
|
|
help="Name of EBL model as used by Gammapy", |
31
|
|
|
default="dominguez", |
32
|
|
|
type=str, |
33
|
|
|
) |
34
|
|
|
|
35
|
|
|
parser.add_argument( |
36
|
|
|
"--write-config", |
37
|
|
|
help="Boolean to write the best-fit model into a separate file.", |
38
|
|
|
default=True, |
39
|
|
|
type=bool, |
40
|
|
|
) |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
def get_model_config_files(select_model_tags): |
44
|
|
|
"""From the default model templates, select some.""" |
45
|
|
|
|
46
|
|
|
spec_model_template_files = sorted(list(CONFIG_PATH.glob("model_templates/model_template*yaml"))) |
47
|
|
|
|
48
|
|
|
spec_model_temp_files = [] |
49
|
|
|
|
50
|
|
|
for p in spec_model_template_files: |
51
|
|
|
tag = p.name.split(".")[0].split("_")[-1] |
52
|
|
|
|
53
|
|
|
if tag in select_model_tags: |
54
|
|
|
spec_model_temp_files.append(p) |
55
|
|
|
|
56
|
|
|
spec_model_temp_files = np.array(spec_model_temp_files) |
57
|
|
|
|
58
|
|
|
return spec_model_temp_files |
59
|
|
|
|
60
|
|
|
|
61
|
|
|
def update_config(config_1, config_2): |
62
|
|
|
"""From config_1 update information in config_2.""" |
63
|
|
|
|
64
|
|
|
# Have the same value of amplitude |
65
|
|
|
config_2.config.target.components[0].spectral.parameters[0].value = ( |
66
|
|
|
config_1.config.target.components[0].spectral.parameters[0].value |
67
|
|
|
) |
68
|
|
|
# Have the same value of reference/e_break energy |
69
|
|
|
config_2.config.target.components[0].spectral.parameters[1].value = ( |
70
|
|
|
config_1.config.target.components[0].spectral.parameters[1].value |
71
|
|
|
) |
72
|
|
|
# Have the same value of redshift value and EBL reference model |
73
|
|
|
config_2.config.target.components[0].spectral.ebl_abs.redshift = config_1.config.target.components[ |
74
|
|
|
0 |
75
|
|
|
].spectral.ebl_abs.redshift |
76
|
|
|
|
77
|
|
|
# Make sure the source names are the same |
78
|
|
|
config_2.config.target.source_name = config_1.config.target.source_name |
79
|
|
|
config_2.config.target.components[0].name = config_1.config.target.components[0].name |
80
|
|
|
|
81
|
|
|
return config_2 |
82
|
|
|
|
83
|
|
|
|
84
|
|
|
def fetch_all_analysis_objects(main_config, spec_model_temp_files, ebl_scale_factor, ebl_model_name): |
85
|
|
|
"""For a list of spectral models, initiate AsgardpyAnalysis objects.""" |
86
|
|
|
main_analysis_list = {} |
87
|
|
|
spec_models_list = [] |
88
|
|
|
|
89
|
|
|
for temp in spec_model_temp_files: |
90
|
|
|
temp_model = AsgardpyAnalysis(main_config) |
91
|
|
|
temp_model.config.target.models_file = temp |
92
|
|
|
|
93
|
|
|
temp_model_2 = AsgardpyAnalysis(temp_model.config) |
94
|
|
|
|
95
|
|
|
update_config(temp_model, temp_model_2) |
96
|
|
|
|
97
|
|
|
if ebl_scale_factor != 1.0: |
98
|
|
|
temp_model_2.config.target.components[0].spectral.ebl_abs.alpha_norm = ebl_scale_factor |
99
|
|
|
|
100
|
|
|
if ebl_model_name != "dominguez": |
101
|
|
|
temp_model_2.config.target.components[0].spectral.ebl_abs.reference = ebl_model_name.replace("_", "-") |
102
|
|
|
else: |
103
|
|
|
temp_model_2.config.target.components[ |
104
|
|
|
0 |
105
|
|
|
].spectral.ebl_abs.reference = temp_model.config.target.components[0].spectral.ebl_abs.reference |
106
|
|
|
|
107
|
|
|
spec_tag = temp.name.split(".")[0].split("_")[-1] |
108
|
|
|
spec_models_list.append(spec_tag) |
109
|
|
|
main_analysis_list[spec_tag] = {} |
110
|
|
|
|
111
|
|
|
main_analysis_list[spec_tag]["Analysis"] = temp_model_2 |
112
|
|
|
|
113
|
|
|
spec_models_list = np.array(spec_models_list) |
114
|
|
|
|
115
|
|
|
return main_analysis_list, spec_models_list |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
def fetch_all_analysis_fit_info(main_analysis_list, spec_models_list): |
119
|
|
|
""" |
120
|
|
|
For a list of spectral models, with the AsgardpyAnalysis run till the fit |
121
|
|
|
step, get the relevant information for testing the model preference. |
122
|
|
|
""" |
123
|
|
|
fit_success_list = [] |
124
|
|
|
pref_over_pl_chi2_list = [] |
125
|
|
|
stat_list = [] |
126
|
|
|
dof_list = [] |
127
|
|
|
|
128
|
|
|
for tag in spec_models_list: |
129
|
|
|
dict_tag = main_analysis_list[tag]["Analysis"].instrument_spectral_info |
130
|
|
|
dict_pl = main_analysis_list["pl"]["Analysis"].instrument_spectral_info |
131
|
|
|
|
132
|
|
|
# Collect parameters for AIC check |
133
|
|
|
stat = dict_tag["best_fit_stat"] |
134
|
|
|
dof = dict_tag["DoF"] |
135
|
|
|
|
136
|
|
|
fit_success = main_analysis_list[tag]["Analysis"].fit_result.success |
137
|
|
|
|
138
|
|
|
fit_success_list.append(fit_success) |
139
|
|
|
stat_list.append(stat) |
140
|
|
|
dof_list.append(dof) |
141
|
|
|
|
142
|
|
|
# Checking the preference of a "nested" spectral model (observed), |
143
|
|
|
# over Power Law. |
144
|
|
|
if tag == "pl": |
145
|
|
|
main_analysis_list[tag]["Pref_over_pl_chi2"] = 0 |
146
|
|
|
main_analysis_list[tag]["Pref_over_pl_pval"] = 0 |
147
|
|
|
main_analysis_list[tag]["DoF_over_pl"] = 0 |
148
|
|
|
pref_over_pl_chi2_list.append(0) |
149
|
|
|
continue |
150
|
|
|
|
151
|
|
|
p_pl_x, g_pl_x, ndof_pl_x = check_model_preference_lrt( |
152
|
|
|
dict_pl["best_fit_stat"], |
153
|
|
|
dict_tag["best_fit_stat"], |
154
|
|
|
dict_pl["DoF"], |
155
|
|
|
dict_tag["DoF"], |
156
|
|
|
) |
157
|
|
|
|
158
|
|
|
main_analysis_list[tag]["Pref_over_pl_chi2"] = g_pl_x |
159
|
|
|
pref_over_pl_chi2_list.append(g_pl_x) |
160
|
|
|
main_analysis_list[tag]["Pref_over_pl_pval"] = p_pl_x |
161
|
|
|
main_analysis_list[tag]["DoF_over_pl"] = ndof_pl_x |
162
|
|
|
|
163
|
|
|
fit_success_list = np.array(fit_success_list) |
164
|
|
|
|
165
|
|
|
# Only select fit results that were successful for comparisons |
166
|
|
|
stat_list = np.array(stat_list)[fit_success_list] |
167
|
|
|
dof_list = np.array(dof_list)[fit_success_list] |
168
|
|
|
pref_over_pl_chi2_list = np.array(pref_over_pl_chi2_list)[fit_success_list] |
169
|
|
|
|
170
|
|
|
return fit_success_list, stat_list, dof_list, pref_over_pl_chi2_list |
171
|
|
|
|
172
|
|
|
|
173
|
|
|
def tabulate_best_fit_stats(spec_models_list, fit_success_list, main_analysis_list, list_rel_p): |
174
|
|
|
"""For a list of spectral models, tabulate the best fit information.""" |
175
|
|
|
|
176
|
|
|
fit_stats_table = [] |
177
|
|
|
|
178
|
|
|
for i, tag in enumerate(spec_models_list[fit_success_list]): |
179
|
|
|
info_ = main_analysis_list[tag]["Analysis"].instrument_spectral_info |
180
|
|
|
|
181
|
|
|
t = main_analysis_list[tag] |
182
|
|
|
|
183
|
|
|
ts_gof = round(info_["best_fit_stat"] - info_["max_fit_stat"], 3) |
184
|
|
|
t_fits = { |
185
|
|
|
"Spectral Model": tag.upper(), |
186
|
|
|
"TS of Best Fit": round(info_["best_fit_stat"], 3), |
187
|
|
|
"TS of Max Fit": round(info_["max_fit_stat"], 3), |
188
|
|
|
"TS of Goodness of Fit": ts_gof, |
189
|
|
|
"DoF of Fit": info_["DoF"], |
190
|
|
|
r"Significance ($\sigma$) of Goodness of Fit": round(info_["fit_chi2_sig"], 3), |
191
|
|
|
"p-value of Goodness of Fit": float(f"{info_['fit_pval']:.4g}"), |
192
|
|
|
"Pref over PL (chi2)": round(t["Pref_over_pl_chi2"], 3), |
193
|
|
|
"Pref over PL (p-value)": float(f"{t['Pref_over_pl_pval']:.4g}"), |
194
|
|
|
"Pref over PL (DoF)": t["DoF_over_pl"], |
195
|
|
|
"Relative p-value (AIC)": float(f"{list_rel_p[i]:.4g}"), |
196
|
|
|
} |
197
|
|
|
fit_stats_table.append(t_fits) |
198
|
|
|
stats_table = QTable(fit_stats_table) |
199
|
|
|
|
200
|
|
|
return stats_table |
201
|
|
|
|
202
|
|
|
|
203
|
|
|
def write_output_config_yaml(model_): |
204
|
|
|
"""With the selected spectral model, update a default config in yaml.""" |
205
|
|
|
|
206
|
|
|
spec_model = model_.spectral_model.model1.to_dict() |
207
|
|
|
|
208
|
|
|
temp_config = AsgardpyConfig() |
209
|
|
|
temp_config.target.components[0] = spec_model |
210
|
|
|
# Update with the spectral model info |
211
|
|
|
temp_ = temp_config.dict(exclude_defaults=True) |
212
|
|
|
|
213
|
|
|
# Remove some of the unnecessary keys |
214
|
|
|
temp_["target"].pop("models_file", None) |
215
|
|
|
temp_["target"]["components"][0]["spectral"].pop("ebl_abs", None) |
216
|
|
|
|
217
|
|
|
yaml_ = yaml.dump( |
218
|
|
|
temp_, |
219
|
|
|
sort_keys=False, |
220
|
|
|
indent=4, |
221
|
|
|
width=80, |
222
|
|
|
default_flow_style=None, |
223
|
|
|
) |
224
|
|
|
return yaml_ |
225
|
|
|
|
226
|
|
|
|
227
|
|
|
def main(): |
228
|
|
|
args = parser.parse_args() |
229
|
|
|
|
230
|
|
|
main_config = AsgardpyConfig.read(args.config) |
231
|
|
|
config_path = Path(args.config) |
232
|
|
|
config_path_file_name = config_path.name.split(".")[0] |
233
|
|
|
target_source_name = main_config.target.source_name |
234
|
|
|
|
235
|
|
|
steps_list = [] |
236
|
|
|
for s in main_config.general.steps: |
237
|
|
|
if s.value != "flux-points": |
238
|
|
|
steps_list.append(s.value) |
239
|
|
|
log.info("Target source is: %s", target_source_name) |
240
|
|
|
|
241
|
|
|
spec_model_temp_files = get_model_config_files(["lp", "bpl", "ecpl", "pl", "eclp", "sbpl"]) |
242
|
|
|
|
243
|
|
|
main_analysis_list, spec_models_list = fetch_all_analysis_objects( |
244
|
|
|
main_config, spec_model_temp_files, args.ebl_scale_factor, args.ebl_model_name |
245
|
|
|
) |
246
|
|
|
|
247
|
|
|
# Run Analysis Steps till Fit |
248
|
|
|
PL_idx = 0 |
249
|
|
|
|
250
|
|
|
for i, tag in enumerate(spec_models_list): |
251
|
|
|
log.info("Spectral model being tested: %s", tag) |
252
|
|
|
|
253
|
|
|
main_analysis_list[tag]["Analysis"].run(steps_list) |
254
|
|
|
|
255
|
|
|
if tag == "pl": |
256
|
|
|
PL_idx = i |
257
|
|
|
|
258
|
|
|
fit_success_list, stat_list, dof_list, pref_over_pl_chi2_list = fetch_all_analysis_fit_info( |
259
|
|
|
main_analysis_list, spec_models_list |
260
|
|
|
) |
261
|
|
|
|
262
|
|
|
# If any spectral model has at least 5 sigmas preference over PL |
263
|
|
|
best_sp_idx_lrt = np.nonzero(pref_over_pl_chi2_list == np.nanmax(pref_over_pl_chi2_list))[0] |
264
|
|
|
for idx in best_sp_idx_lrt: |
265
|
|
|
if pref_over_pl_chi2_list[idx] > 5: |
266
|
|
|
sp_idx_lrt = idx |
267
|
|
|
log.info("Best preferred spectral model over PL is %s", spec_models_list[idx]) |
268
|
|
|
else: |
269
|
|
|
sp_idx_lrt = PL_idx |
270
|
|
|
log.info("No other model preferred over PL") |
271
|
|
|
|
272
|
|
|
list_rel_p = check_model_preference_aic(stat_list, dof_list) |
273
|
|
|
|
274
|
|
|
best_sp_idx_aic = np.nonzero(list_rel_p == np.nanmax(list_rel_p))[0] |
275
|
|
|
|
276
|
|
|
for idx in best_sp_idx_aic: |
277
|
|
|
if list_rel_p[idx] > 0.95: |
278
|
|
|
sp_idx_aic = idx |
279
|
|
|
log.info("Best preferred spectral model is %s", spec_models_list[fit_success_list][idx]) |
280
|
|
|
else: |
281
|
|
|
sp_idx_aic = PL_idx |
282
|
|
|
log.info("No other model preferred, hence PL is selected") |
283
|
|
|
|
284
|
|
|
stats_table = tabulate_best_fit_stats(spec_models_list, fit_success_list, main_analysis_list, list_rel_p) |
285
|
|
|
|
286
|
|
|
stats_table.meta["Target source name"] = target_source_name |
287
|
|
|
stats_table.meta["EBL model"] = args.ebl_model_name |
288
|
|
|
stats_table.meta["EBL scale factor"] = args.ebl_scale_factor |
289
|
|
|
|
290
|
|
|
file_name = f"{config_path_file_name}_{args.ebl_model_name}_{args.ebl_scale_factor}_fit_stats.ecsv" |
291
|
|
|
stats_table.write( |
292
|
|
|
main_config.general.outdir / file_name, |
293
|
|
|
format="ascii.ecsv", |
294
|
|
|
overwrite=True, |
295
|
|
|
) |
296
|
|
|
|
297
|
|
|
if args.write_config: |
298
|
|
|
log.info("Write the spectral model") |
299
|
|
|
|
300
|
|
|
for idx, name in zip([sp_idx_lrt, sp_idx_aic], ["lrt", "aic"], strict=False): |
|
|
|
|
301
|
|
|
tag = spec_models_list[fit_success_list][idx] |
302
|
|
|
|
303
|
|
|
path = config_path.parent / f"{config_path_file_name}_model_most_pref_{name}.yaml" |
304
|
|
|
|
305
|
|
|
yaml_ = write_output_config_yaml(main_analysis_list[tag]["Analysis"].final_model[0]) |
306
|
|
|
path.write_text(yaml_) |
307
|
|
|
|
308
|
|
|
|
309
|
|
|
if __name__ == "__main__": |
310
|
|
|
main() |
311
|
|
|
|