1
|
|
|
""" |
2
|
|
|
Classes containing the Target config parameters for the high-level interface and |
3
|
|
|
also the functions involving Models generation and assignment to datasets. |
4
|
|
|
""" |
5
|
|
|
|
6
|
|
|
from enum import Enum |
7
|
|
|
|
8
|
|
|
import astropy.units as u |
9
|
|
|
import numpy as np |
10
|
|
|
from gammapy.modeling import Parameter |
11
|
|
|
from gammapy.modeling.models import ( |
12
|
|
|
SPATIAL_MODEL_REGISTRY, |
13
|
|
|
SPECTRAL_MODEL_REGISTRY, |
14
|
|
|
DatasetModels, |
15
|
|
|
EBLAbsorptionNormSpectralModel, |
16
|
|
|
FoVBackgroundModel, |
17
|
|
|
Models, |
18
|
|
|
SkyModel, |
19
|
|
|
SpectralModel, |
20
|
|
|
) |
21
|
|
|
|
22
|
|
|
from asgardpy.base.base import AngleType, BaseConfig, FrameEnum, PathType |
23
|
|
|
from asgardpy.base.geom import SkyPositionConfig |
24
|
|
|
|
25
|
|
|
__all__ = [ |
26
|
|
|
"BrokenPowerLaw2SpectralModel", |
27
|
|
|
"EBLAbsorptionModel", |
28
|
|
|
"ExpCutoffLogParabolaSpectralModel", |
29
|
|
|
"ModelTypeEnum", |
30
|
|
|
"RoISelectionConfig", |
31
|
|
|
"SpatialModelConfig", |
32
|
|
|
"SpectralModelConfig", |
33
|
|
|
"Target", |
34
|
|
|
"apply_selection_mask_to_models", |
35
|
|
|
"config_to_dict", |
36
|
|
|
"read_models_from_asgardpy_config", |
37
|
|
|
"set_models", |
38
|
|
|
] |
39
|
|
|
|
40
|
|
|
|
41
|
|
|
# Basic components to define the Target Config and any Models Config |
42
|
|
|
class ModelTypeEnum(str, Enum): |
43
|
|
|
""" |
44
|
|
|
Config section for Different Gammapy Model type. |
45
|
|
|
""" |
46
|
|
|
|
47
|
|
|
skymodel = "SkyModel" |
48
|
|
|
fovbkgmodel = "FoVBackgroundModel" |
49
|
|
|
|
50
|
|
|
|
51
|
|
|
class EBLAbsorptionModel(BaseConfig): |
52
|
|
|
""" |
53
|
|
|
Config section for parameters to use for EBLAbsorptionNormSpectralModel. |
54
|
|
|
""" |
55
|
|
|
|
56
|
|
|
filename: PathType = PathType("None") |
57
|
|
|
reference: str = "" |
58
|
|
|
type: str = "EBLAbsorptionNormSpectralModel" |
59
|
|
|
redshift: float = 0.0 |
60
|
|
|
alpha_norm: float = 1.0 |
61
|
|
|
|
62
|
|
|
|
63
|
|
|
class ModelParams(BaseConfig): |
64
|
|
|
"""Config section for parameters to use for a basic Parameter object.""" |
65
|
|
|
|
66
|
|
|
name: str = "" |
67
|
|
|
value: float = 1 |
68
|
|
|
unit: str = " " |
69
|
|
|
error: float = 0.1 |
70
|
|
|
min: float = 0.1 |
71
|
|
|
max: float = 10 |
72
|
|
|
frozen: bool = True |
73
|
|
|
|
74
|
|
|
|
75
|
|
|
class SpectralModelConfig(BaseConfig): |
76
|
|
|
""" |
77
|
|
|
Config section for parameters to use for creating a SpectralModel object. |
78
|
|
|
""" |
79
|
|
|
|
80
|
|
|
type: str = "" |
81
|
|
|
parameters: list[ModelParams] = [ModelParams()] |
82
|
|
|
ebl_abs: EBLAbsorptionModel = EBLAbsorptionModel() |
83
|
|
|
|
84
|
|
|
|
85
|
|
|
class SpatialModelConfig(BaseConfig): |
86
|
|
|
""" |
87
|
|
|
Config section for parameters to use for creating a SpatialModel object. |
88
|
|
|
""" |
89
|
|
|
|
90
|
|
|
type: str = "" |
91
|
|
|
frame: FrameEnum = FrameEnum.icrs |
92
|
|
|
parameters: list[ModelParams] = [ModelParams()] |
93
|
|
|
|
94
|
|
|
|
95
|
|
|
class ModelComponent(BaseConfig): |
96
|
|
|
"""Config section for parameters to use for creating a SkyModel object.""" |
97
|
|
|
|
98
|
|
|
name: str = "" |
99
|
|
|
type: ModelTypeEnum = ModelTypeEnum.skymodel |
100
|
|
|
datasets_names: list[str] = [""] |
101
|
|
|
spectral: SpectralModelConfig = SpectralModelConfig() |
102
|
|
|
spatial: SpatialModelConfig = SpatialModelConfig() |
103
|
|
|
|
104
|
|
|
|
105
|
|
|
class RoISelectionConfig(BaseConfig): |
106
|
|
|
""" |
107
|
|
|
Config section for parameters to perform some selection on FoV source |
108
|
|
|
models. |
109
|
|
|
""" |
110
|
|
|
|
111
|
|
|
roi_radius: AngleType = 0 * u.deg |
112
|
|
|
free_sources: list[str] = [] |
113
|
|
|
|
114
|
|
|
|
115
|
|
|
class CatalogConfig(BaseConfig): |
116
|
|
|
"""Config section for parameters to use information from Catalog.""" |
117
|
|
|
|
118
|
|
|
name: str = "" |
119
|
|
|
selection_radius: AngleType = 0 * u.deg |
120
|
|
|
exclusion_radius: AngleType = 0 * u.deg |
121
|
|
|
|
122
|
|
|
|
123
|
|
|
class Target(BaseConfig): |
124
|
|
|
"""Config section for main information on creating various Models.""" |
125
|
|
|
|
126
|
|
|
source_name: str = "" |
127
|
|
|
sky_position: SkyPositionConfig = SkyPositionConfig() |
128
|
|
|
use_uniform_position: bool = True |
129
|
|
|
models_file: PathType = PathType("None") |
130
|
|
|
datasets_with_fov_bkg_model: list[str] = [] |
131
|
|
|
use_catalog: CatalogConfig = CatalogConfig() |
132
|
|
|
components: list[ModelComponent] = [ModelComponent()] |
133
|
|
|
covariance: str = "" |
134
|
|
|
from_3d: bool = False |
135
|
|
|
roi_selection: RoISelectionConfig = RoISelectionConfig() |
136
|
|
|
|
137
|
|
|
|
138
|
|
|
class ExpCutoffLogParabolaSpectralModel(SpectralModel): |
139
|
|
|
r"""Spectral Exponential Cutoff Log Parabola model. |
140
|
|
|
|
141
|
|
|
Using a simple template from Gammapy. |
142
|
|
|
|
143
|
|
|
.. math:: |
144
|
|
|
\phi(E) = \phi_0 \left( \frac{E}{E_0} \right) ^ { |
145
|
|
|
- \alpha_1 - \beta \log{ \left( \frac{E}{E_0} \right) }} \cdot |
146
|
|
|
\exp(- {(\lambda E})^{\alpha_2}) |
147
|
|
|
|
148
|
|
|
Parameters |
149
|
|
|
---------- |
150
|
|
|
amplitude : `~astropy.units.Quantity` |
151
|
|
|
:math:`\phi_0` |
152
|
|
|
reference : `~astropy.units.Quantity` |
153
|
|
|
:math:`E_0` |
154
|
|
|
alpha_1 : `~astropy.units.Quantity` |
155
|
|
|
:math:`\alpha_1` |
156
|
|
|
beta : `~astropy.units.Quantity` |
157
|
|
|
:math:`\beta` |
158
|
|
|
lambda_ : `~astropy.units.Quantity` |
159
|
|
|
:math:`\lambda` |
160
|
|
|
alpha_2 : `~astropy.units.Quantity` |
161
|
|
|
:math:`\alpha_2` |
162
|
|
|
""" |
163
|
|
|
|
164
|
|
|
tag = ["ExpCutoffLogParabolaSpectralModel", "ECLP"] |
165
|
|
|
|
166
|
|
|
amplitude = Parameter( |
167
|
|
|
"amplitude", |
168
|
|
|
"1e-12 cm-2 s-1 TeV-1", |
169
|
|
|
scale_method="scale10", |
170
|
|
|
interp="log", |
171
|
|
|
is_norm=True, |
172
|
|
|
) |
173
|
|
|
reference = Parameter("reference", "1 TeV", frozen=True) |
174
|
|
|
alpha_1 = Parameter("alpha_1", -2) |
175
|
|
|
alpha_2 = Parameter("alpha_2", 1, frozen=True) |
176
|
|
|
beta = Parameter("beta", 1) |
177
|
|
|
lambda_ = Parameter("lambda_", "0.1 TeV-1") |
178
|
|
|
|
179
|
|
|
@staticmethod |
180
|
|
|
def evaluate(energy, amplitude, reference, alpha_1, beta, lambda_, alpha_2): |
181
|
|
|
"""Evaluate the model (static function).""" |
182
|
|
|
en_ref = energy / reference |
183
|
|
|
exponent = -alpha_1 - beta * np.log(en_ref) |
184
|
|
|
cutoff = np.exp(-np.power(energy * lambda_, alpha_2)) |
185
|
|
|
|
186
|
|
|
return amplitude * np.power(en_ref, exponent) * cutoff |
187
|
|
|
|
188
|
|
|
|
189
|
|
|
class BrokenPowerLaw2SpectralModel(SpectralModel): |
190
|
|
|
r"""Spectral broken power-law 2 model. |
191
|
|
|
|
192
|
|
|
In this slightly modified Broken Power Law, instead of having the second index |
193
|
|
|
as a distinct parameter, the difference in the spectral indices around the |
194
|
|
|
Break Energy is used, to try for some assumptions on the different physical |
195
|
|
|
processes that define the full spectrum, where the second process is dependent |
196
|
|
|
on the first process. |
197
|
|
|
|
198
|
|
|
For more information see :ref:`broken-powerlaw-spectral-model`. |
199
|
|
|
|
200
|
|
|
.. math:: |
201
|
|
|
\phi(E) = \phi_0 \cdot \begin{cases} |
202
|
|
|
\left( \frac{E}{E_{break}} \right)^{-\Gamma_1} & \text{if } E < E_{break} \\ |
203
|
|
|
\left( \frac{E}{E_{break}} \right)^{-(\Gamma_1 + \Delta\Gamma)} & \text{otherwise} |
204
|
|
|
\end{cases} |
205
|
|
|
|
206
|
|
|
Parameters |
207
|
|
|
---------- |
208
|
|
|
index1 : `~astropy.units.Quantity` |
209
|
|
|
:math:`\Gamma_1` |
210
|
|
|
index_diff : `~astropy.units.Quantity` |
211
|
|
|
:math:`\Delta\Gamma` |
212
|
|
|
amplitude : `~astropy.units.Quantity` |
213
|
|
|
:math:`\phi_0` |
214
|
|
|
ebreak : `~astropy.units.Quantity` |
215
|
|
|
:math:`E_{break}` |
216
|
|
|
|
217
|
|
|
See Also |
218
|
|
|
-------- |
219
|
|
|
SmoothBrokenPowerLawSpectralModel |
220
|
|
|
""" |
221
|
|
|
|
222
|
|
|
tag = ["BrokenPowerLaw2SpectralModel", "bpl2"] |
223
|
|
|
index1 = Parameter("index1", 2.0) |
224
|
|
|
index_diff = Parameter("index_diff", 1.0) |
225
|
|
|
amplitude = Parameter( |
226
|
|
|
name="amplitude", |
227
|
|
|
value="1e-12 cm-2 s-1 TeV-1", |
228
|
|
|
scale_method="scale10", |
229
|
|
|
interp="log", |
230
|
|
|
is_norm=True, |
231
|
|
|
) |
232
|
|
|
ebreak = Parameter("ebreak", "1 TeV") |
233
|
|
|
|
234
|
|
|
@staticmethod |
235
|
|
|
def evaluate(energy, index1, index_diff, amplitude, ebreak): |
236
|
|
|
"""Evaluate the model (static function).""" |
237
|
|
|
energy = np.atleast_1d(energy) |
238
|
|
|
cond = energy < ebreak |
239
|
|
|
bpwl2 = amplitude * np.ones(energy.shape) |
240
|
|
|
|
241
|
|
|
index2 = index1 + index_diff |
242
|
|
|
bpwl2[cond] *= (energy[cond] / ebreak) ** (-index1) |
243
|
|
|
bpwl2[~cond] *= (energy[~cond] / ebreak) ** (-index2) |
244
|
|
|
|
245
|
|
|
return bpwl2 |
246
|
|
|
|
247
|
|
|
|
248
|
|
|
SPECTRAL_MODEL_REGISTRY.append(ExpCutoffLogParabolaSpectralModel) |
249
|
|
|
SPECTRAL_MODEL_REGISTRY.append(BrokenPowerLaw2SpectralModel) |
250
|
|
|
|
251
|
|
|
|
252
|
|
|
# Function for Models assignment |
253
|
|
|
def extend_bkg_models(models, all_datasets, datasets_with_fov_bkg_model): |
254
|
|
|
""" """ |
255
|
|
|
if len(datasets_with_fov_bkg_model) > 0: |
256
|
|
|
# For extending a Background Model for a given 3D dataset name |
257
|
|
|
bkg_models = [] |
258
|
|
|
|
259
|
|
|
for dataset in all_datasets: |
260
|
|
|
if dataset.name in datasets_with_fov_bkg_model: |
261
|
|
|
# Check if it is of MapDataset or MapDatasetOnOff type and |
262
|
|
|
# no associated background model exists already. |
263
|
|
|
if "MapDataset" in dataset.tag and dataset.background_model is None: |
264
|
|
|
bkg_models.append(FoVBackgroundModel(dataset_name=f"{dataset.name}-bkg")) |
265
|
|
|
|
266
|
|
|
models.extend(bkg_models) |
267
|
|
|
|
268
|
|
|
return models |
269
|
|
|
|
270
|
|
|
|
271
|
|
|
def update_models_datasets_names(models, source_name, datasets_name_list): |
272
|
|
|
""" """ |
273
|
|
|
if len(models) > 1: |
274
|
|
|
models[source_name].datasets_names = datasets_name_list |
275
|
|
|
|
276
|
|
|
# Check if FoVBackgroundModel is provided |
277
|
|
|
bkg_model_name = [m_name for m_name in models.names if "bkg" in m_name] |
278
|
|
|
|
279
|
|
|
if len(bkg_model_name) > 0: |
280
|
|
|
# Remove the -bkg part of the name of the FoVBackgroundModel to get |
281
|
|
|
# the appropriate datasets name. |
282
|
|
|
for bkg_name in bkg_model_name: |
283
|
|
|
models[bkg_name].datasets_names = [bkg_name[:-4]] |
284
|
|
|
else: |
285
|
|
|
models.datasets_names = datasets_name_list |
286
|
|
|
|
287
|
|
|
return models |
288
|
|
|
|
289
|
|
|
|
290
|
|
|
def set_models( |
291
|
|
|
config_target, |
292
|
|
|
datasets, |
293
|
|
|
datasets_name_list=None, |
294
|
|
|
models=None, |
295
|
|
|
): |
296
|
|
|
""" |
297
|
|
|
Set models on given Datasets. |
298
|
|
|
|
299
|
|
|
Parameters |
300
|
|
|
---------- |
301
|
|
|
config_target: `AsgardpyConfig.target` |
302
|
|
|
AsgardpyConfig containing target information. |
303
|
|
|
datasets: `gammapy.datasets.Datasets` |
304
|
|
|
Datasets object |
305
|
|
|
dataset_name_list: list |
306
|
|
|
List of datasets_names to be used on the Models, before assigning them |
307
|
|
|
to the given datasets. |
308
|
|
|
models : `~gammapy.modeling.models.Models` or str of file location or None |
309
|
|
|
Models object or YAML models string |
310
|
|
|
|
311
|
|
|
Returns |
312
|
|
|
------- |
313
|
|
|
datasets: `gammapy.datasets.Datasets` |
314
|
|
|
Datasets object with Models assigned. |
315
|
|
|
""" |
316
|
|
|
# Have some checks on argument types |
317
|
|
|
if isinstance(models, DatasetModels | list): |
318
|
|
|
models = Models(models) |
319
|
|
|
elif isinstance(models, PathType): |
320
|
|
|
models = Models.read(models) |
321
|
|
|
elif models is None: |
322
|
|
|
models = Models(models) |
323
|
|
|
else: |
324
|
|
|
raise TypeError(f"Invalid type: {type(models)}") |
325
|
|
|
|
326
|
|
|
if len(models) == 0: |
327
|
|
|
if config_target.components[0].name != "": |
328
|
|
|
models = read_models_from_asgardpy_config(config_target) |
329
|
|
|
else: |
330
|
|
|
raise ValueError("No input for Models provided for the Target source!") |
331
|
|
|
else: |
332
|
|
|
models = apply_selection_mask_to_models( |
333
|
|
|
list_sources=models, |
334
|
|
|
target_source=config_target.source_name, |
335
|
|
|
roi_radius=config_target.roi_selection.roi_radius, |
336
|
|
|
free_sources=config_target.roi_selection.free_sources, |
337
|
|
|
) |
338
|
|
|
|
339
|
|
|
models = extend_bkg_models(models, datasets, config_target.datasets_with_fov_bkg_model) |
340
|
|
|
|
341
|
|
|
if datasets_name_list is None: |
342
|
|
|
datasets_name_list = datasets.names |
343
|
|
|
|
344
|
|
|
models = update_models_datasets_names(models, config_target.source_name, datasets_name_list) |
345
|
|
|
|
346
|
|
|
datasets.models = models |
347
|
|
|
|
348
|
|
|
return datasets, models |
349
|
|
|
|
350
|
|
|
|
351
|
|
|
def apply_models_mask_in_roi(list_sources_excluded, target_source, roi_radius, free_sources): |
352
|
|
|
""" """ |
353
|
|
|
# Get the target source position as the center of RoI |
354
|
|
|
if not target_source: |
355
|
|
|
target_source = list_sources_excluded[0].name |
356
|
|
|
target_source_pos = list_sources_excluded[0].spatial_model.position |
357
|
|
|
else: |
358
|
|
|
target_source_pos = list_sources_excluded[target_source].spatial_model.position |
359
|
|
|
|
360
|
|
|
# If RoI radius is provided and is not default |
361
|
|
|
if roi_radius.to_value("deg") != 0: |
362
|
|
|
for model_ in list_sources_excluded: |
363
|
|
|
model_pos = model_.spatial_model.position |
364
|
|
|
separation = target_source_pos.separation(model_pos).deg |
365
|
|
|
if separation >= roi_radius.deg: |
366
|
|
|
model_.spectral_model.freeze() |
367
|
|
|
else: |
368
|
|
|
# For a given list of non free sources, unfreeze the spectral amplitude |
369
|
|
|
if len(free_sources) > 0: |
370
|
|
|
for model_ in list_sources_excluded: |
371
|
|
|
# Freeze all spectral parameters for other models |
372
|
|
|
if model_.name != target_source: |
373
|
|
|
model_.spectral_model.freeze() |
374
|
|
|
# and now unfreeze the amplitude of selected models |
375
|
|
|
if model_.name in free_sources: |
376
|
|
|
model_.spectral_model.parameters["amplitude"].frozen = False |
377
|
|
|
|
378
|
|
|
return list_sources_excluded |
379
|
|
|
|
380
|
|
|
|
381
|
|
|
def apply_selection_mask_to_models( |
382
|
|
|
list_sources, target_source=None, selection_mask=None, roi_radius=0 * u.deg, free_sources=None |
383
|
|
|
): |
384
|
|
|
""" |
385
|
|
|
For a given list of source models, with a given target source, apply various |
386
|
|
|
selection masks on the Region of Interest in the sky. This will lead to |
387
|
|
|
complete exclusion of models or freezing some or all spectral parameters. |
388
|
|
|
These selections excludes the diffuse background models in the given list. |
389
|
|
|
|
390
|
|
|
First priority is given if a distinct selection mask is provided, with a |
391
|
|
|
list of excluded regions to return only the source models within the selected |
392
|
|
|
ROI. |
393
|
|
|
|
394
|
|
|
Second priority is on creating a Circular ROI as per the given radius, and |
395
|
|
|
freeze all the spectral parameters of the models of the sources. |
396
|
|
|
|
397
|
|
|
Third priority is when a list of free_sources is provided, then the |
398
|
|
|
spectral amplitude of models of those sources, if present in the given list |
399
|
|
|
of models, will be unfrozen, and hence, allowed to be variable for fitting. |
400
|
|
|
|
401
|
|
|
Parameters |
402
|
|
|
---------- |
403
|
|
|
list_sources: '~gammapy.modeling.models.Models' |
404
|
|
|
Models object containing a list of source models. |
405
|
|
|
target_source: 'str' |
406
|
|
|
Name of the target source, whose position is used as the center of ROI. |
407
|
|
|
selection_mask: 'WcsNDMap' |
408
|
|
|
Map containing a boolean mask to apply to Models object. |
409
|
|
|
roi_radius: 'astropy.units.Quantity' or 'asgardpy.data.base.AngleType' |
410
|
|
|
Radius for a circular region around ROI (deg) |
411
|
|
|
free_sources: 'list' |
412
|
|
|
List of source names for which the spectral amplitude is to be kept free. |
413
|
|
|
|
414
|
|
|
Returns |
415
|
|
|
------- |
416
|
|
|
list_sources: '~gammapy.modeling.models.Models' |
417
|
|
|
Selected Models object. |
418
|
|
|
""" |
419
|
|
|
list_sources_excluded = [] |
420
|
|
|
list_diffuse = [] |
421
|
|
|
|
422
|
|
|
if free_sources is None: |
423
|
|
|
free_sources = [] |
424
|
|
|
|
425
|
|
|
# Separate the list of sources and diffuse background |
426
|
|
|
for model_ in list_sources: |
427
|
|
|
if "diffuse" in model_.name or "bkg" in model_.name: |
428
|
|
|
list_diffuse.append(model_) |
429
|
|
|
else: |
430
|
|
|
list_sources_excluded.append(model_) |
431
|
|
|
|
432
|
|
|
list_sources_excluded = Models(list_sources_excluded) |
433
|
|
|
|
434
|
|
|
# If a distinct selection mask is provided |
435
|
|
|
if selection_mask: |
436
|
|
|
list_sources_excluded = list_sources_excluded.select_mask(selection_mask) |
437
|
|
|
|
438
|
|
|
list_sources_excluded = apply_models_mask_in_roi( |
439
|
|
|
list_sources_excluded, target_source, roi_radius, free_sources |
440
|
|
|
) |
441
|
|
|
|
442
|
|
|
# Add the diffuse background models back |
443
|
|
|
for diff_ in list_diffuse: |
444
|
|
|
list_sources_excluded.append(diff_) |
445
|
|
|
|
446
|
|
|
# Re-assign to the main variable |
447
|
|
|
list_sources = list_sources_excluded |
448
|
|
|
|
449
|
|
|
return list_sources |
450
|
|
|
|
451
|
|
|
|
452
|
|
|
# Functions for Models generation |
453
|
|
|
def add_ebl_model_from_config(spectral_model, model_config): |
454
|
|
|
""" """ |
455
|
|
|
ebl_model = model_config.spectral.ebl_abs |
456
|
|
|
|
457
|
|
|
# First check for filename of a custom EBL model |
458
|
|
|
if ebl_model.filename.is_file(): |
459
|
|
|
model2 = EBLAbsorptionNormSpectralModel.read(str(ebl_model.filename), redshift=ebl_model.redshift) |
460
|
|
|
# Update the reference name when using the custom EBL model for logging |
461
|
|
|
ebl_model.reference = ebl_model.filename.name[:-8].replace("-", "_") |
462
|
|
|
else: |
463
|
|
|
model2 = EBLAbsorptionNormSpectralModel.read_builtin(ebl_model.reference, redshift=ebl_model.redshift) |
464
|
|
|
if ebl_model.alpha_norm: |
465
|
|
|
model2.alpha_norm.value = ebl_model.alpha_norm |
466
|
|
|
|
467
|
|
|
spectral_model *= model2 |
468
|
|
|
|
469
|
|
|
return spectral_model |
470
|
|
|
|
471
|
|
|
|
472
|
|
|
def read_models_from_asgardpy_config(config): |
473
|
|
|
""" |
474
|
|
|
Reading Models information from AsgardpyConfig and return Models object. |
475
|
|
|
If a FoVBackgroundModel information is provided, it will also be added. |
476
|
|
|
|
477
|
|
|
Parameter |
478
|
|
|
--------- |
479
|
|
|
config: `AsgardpyConfig` |
480
|
|
|
Config section containing Target source information |
481
|
|
|
|
482
|
|
|
Returns |
483
|
|
|
------- |
484
|
|
|
models: `gammapy.modeling.models.Models` |
485
|
|
|
Full gammapy Models object. |
486
|
|
|
""" |
487
|
|
|
models = Models() |
488
|
|
|
|
489
|
|
|
for model_config in config.components: |
490
|
|
|
# Spectral Model |
491
|
|
|
spectral_model = SPECTRAL_MODEL_REGISTRY.get_cls(model_config.spectral.type)().from_dict( |
492
|
|
|
{"spectral": config_to_dict(model_config.spectral)} |
493
|
|
|
) |
494
|
|
|
if model_config.spectral.ebl_abs.reference != "": |
495
|
|
|
spectral_model = add_ebl_model_from_config(spectral_model, model_config) |
496
|
|
|
|
497
|
|
|
spectral_model.name = config.source_name |
498
|
|
|
|
499
|
|
|
# Spatial model if provided |
500
|
|
|
if model_config.spatial.type != "": |
501
|
|
|
spatial_model = SPATIAL_MODEL_REGISTRY.get_cls(model_config.spatial.type)().from_dict( |
502
|
|
|
{"spatial": config_to_dict(model_config.spatial)} |
503
|
|
|
) |
504
|
|
|
else: |
505
|
|
|
spatial_model = None |
506
|
|
|
|
507
|
|
|
match model_config.type: |
508
|
|
|
case "SkyModel": |
509
|
|
|
models.append( |
510
|
|
|
SkyModel( |
511
|
|
|
spectral_model=spectral_model, |
512
|
|
|
spatial_model=spatial_model, |
513
|
|
|
name=config.source_name, |
514
|
|
|
) |
515
|
|
|
) |
516
|
|
|
|
517
|
|
|
# FoVBackgroundModel is the second component |
518
|
|
|
case "FoVBackgroundModel": |
519
|
|
|
models.append( |
520
|
|
|
FoVBackgroundModel( |
521
|
|
|
spectral_model=spectral_model, |
522
|
|
|
spatial_model=spatial_model, |
523
|
|
|
dataset_name=model_config.datasets_names[0], |
524
|
|
|
) |
525
|
|
|
) |
526
|
|
|
|
527
|
|
|
return models |
528
|
|
|
|
529
|
|
|
|
530
|
|
|
def config_to_dict(model_config): |
531
|
|
|
""" |
532
|
|
|
Convert the Spectral/Spatial models into dict. |
533
|
|
|
Probably an extra step and maybe removed later. |
534
|
|
|
|
535
|
|
|
Parameter |
536
|
|
|
--------- |
537
|
|
|
model_config: `AsgardpyConfig` |
538
|
|
|
Config section containing Target Model SkyModel components only. |
539
|
|
|
|
540
|
|
|
Returns |
541
|
|
|
------- |
542
|
|
|
model_dict: dict |
543
|
|
|
dictionary of the particular model. |
544
|
|
|
""" |
545
|
|
|
model_dict = {} |
546
|
|
|
model_dict["type"] = str(model_config.type) |
547
|
|
|
model_dict["parameters"] = [] |
548
|
|
|
|
549
|
|
|
for par in model_config.parameters: |
550
|
|
|
par_dict = {} |
551
|
|
|
par_dict["name"] = par.name |
552
|
|
|
par_dict["value"] = par.value |
553
|
|
|
par_dict["unit"] = par.unit |
554
|
|
|
par_dict["error"] = par.error |
555
|
|
|
par_dict["min"] = par.min |
556
|
|
|
par_dict["max"] = par.max |
557
|
|
|
par_dict["frozen"] = par.frozen |
558
|
|
|
model_dict["parameters"].append(par_dict) |
559
|
|
|
|
560
|
|
|
# For spatial model, include frame info |
561
|
|
|
if hasattr(model_config, "frame"): |
562
|
|
|
model_dict["frame"] = model_config.frame |
563
|
|
|
|
564
|
|
|
return model_dict |
565
|
|
|
|