| Conditions | 1 |
| Total Lines | 92 |
| Code Lines | 47 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | from regions import PointSkyRegion |
||
| 6 | def test_gpy_mwl(gpy_mwl_config, gammapy_data_path): |
||
| 7 | """ |
||
| 8 | Test for running the 3D+1D joint analysis tutorial example from Gammapy. |
||
| 9 | """ |
||
| 10 | |||
| 11 | from gammapy.datasets import FluxPointsDataset |
||
| 12 | from gammapy.estimators import FluxPoints |
||
| 13 | from gammapy.modeling.models import create_crab_spectral_model |
||
| 14 | |||
| 15 | from asgardpy.data.target import set_models |
||
| 16 | |||
| 17 | analysis = AsgardpyAnalysis(gpy_mwl_config) |
||
| 18 | |||
| 19 | # Update model parameters |
||
| 20 | # LP-amplitude |
||
| 21 | analysis.config.target.components[0].spectral.parameters[0].value /= 1e4 |
||
| 22 | analysis.config.target.components[0].spectral.parameters[0].min = 1.0e-13 |
||
| 23 | analysis.config.target.components[0].spectral.parameters[0].max = 0.01 |
||
| 24 | analysis.config.target.components[0].spectral.parameters[0].frozen = False |
||
| 25 | |||
| 26 | # LP-reference |
||
| 27 | analysis.config.target.components[0].spectral.parameters[1].value *= 1e3 |
||
| 28 | analysis.config.target.components[0].spectral.parameters[1].min = 0.001 |
||
| 29 | analysis.config.target.components[0].spectral.parameters[1].max = 100 |
||
| 30 | |||
| 31 | # LP-alpha |
||
| 32 | analysis.config.target.components[0].spectral.parameters[2].min = 0.5 |
||
| 33 | analysis.config.target.components[0].spectral.parameters[2].max = 5.0 |
||
| 34 | analysis.config.target.components[0].spectral.parameters[2].frozen = False |
||
| 35 | |||
| 36 | # LP-beta |
||
| 37 | analysis.config.target.components[0].spectral.parameters[3].min = 0.001 |
||
| 38 | analysis.config.target.components[0].spectral.parameters[3].max = 1.0 |
||
| 39 | analysis.config.target.components[0].spectral.parameters[3].frozen = False |
||
| 40 | |||
| 41 | # Spatial-lon |
||
| 42 | analysis.config.target.components[0].spatial.parameters[0].error = 1.0e-6 |
||
| 43 | analysis.config.target.components[0].spatial.parameters[0].min = 83.0 |
||
| 44 | analysis.config.target.components[0].spatial.parameters[0].max = 84.0 |
||
| 45 | |||
| 46 | # Spatial-lat |
||
| 47 | analysis.config.target.components[0].spatial.parameters[1].error = 1.0e-6 |
||
| 48 | analysis.config.target.components[0].spatial.parameters[1].min = -90 |
||
| 49 | analysis.config.target.components[0].spatial.parameters[1].max = +90 |
||
| 50 | |||
| 51 | # FoV-bkg-Norm - Not being read exactly |
||
| 52 | analysis.config.target.components[1].spectral.parameters[0].min = 0.0 |
||
| 53 | analysis.config.target.components[1].spectral.parameters[0].max = 10.0 |
||
| 54 | analysis.config.target.components[1].spectral.parameters[0].frozen = False |
||
| 55 | |||
| 56 | analysis.run(["datasets-3d"]) |
||
| 57 | analysis.run(["datasets-1d"]) |
||
| 58 | |||
| 59 | # Include HAWC Flux Points |
||
| 60 | # Read to Gammapy objects |
||
| 61 | filename = f"{gammapy_data_path}hawc_crab/HAWC19_flux_points.fits" |
||
| 62 | fp_hawc = FluxPoints.read(filename, reference_model=create_crab_spectral_model("meyer")) |
||
| 63 | fpd_hawc = FluxPointsDataset(data=fp_hawc, name="HAWC") |
||
| 64 | |||
| 65 | analysis.datasets.append(fpd_hawc) |
||
| 66 | |||
| 67 | # Update other dataset info |
||
| 68 | analysis.dataset_name_list.append("HAWC") |
||
| 69 | |||
| 70 | """ |
||
| 71 | # FPE to only run for Fermi and HESS datasets, as HAWC is already estimated. |
||
| 72 | analysis.instrument_spectral_info["name"].append("HAWC") |
||
| 73 | |||
| 74 | hawc_en = np.array([1, 1.78, 3.16, 5.62, 10.0, 17.8, 31.6, 56.2, 100, 177, 316]) * u.TeV |
||
| 75 | analysis.instrument_spectral_info["spectral_energy_ranges"].append(hawc_en) |
||
| 76 | analysis.instrument_spectral_info["en_bins"] += 10 |
||
| 77 | analysis.instrument_spectral_info["DoF"] += 10 |
||
| 78 | """ |
||
| 79 | |||
| 80 | # Reset models to the updated dataset |
||
| 81 | analysis.datasets, analysis.final_model = set_models( |
||
| 82 | analysis.config.target, |
||
| 83 | analysis.datasets, |
||
| 84 | analysis.dataset_name_list, |
||
| 85 | models=analysis.final_model, |
||
| 86 | ) |
||
| 87 | |||
| 88 | # Update Fit energy range |
||
| 89 | analysis.config.fit_params.fit_range.max = "300 TeV" |
||
| 90 | |||
| 91 | analysis.run(["fit"]) |
||
| 92 | analysis.get_flux_points() |
||
| 93 | |||
| 94 | assert analysis.fit_result.success is True |
||
| 95 | assert len(analysis.datasets) == 3 |
||
| 96 | assert len(analysis.flux_points) == 2 |
||
| 97 | assert analysis.datasets[1].counts.geom.region is None |
||
| 98 | |||
| 139 |