|
1
|
|
|
""" |
|
2
|
|
|
Config-driven high level analysis interface. |
|
3
|
|
|
""" |
|
4
|
|
|
|
|
5
|
|
|
import logging |
|
6
|
|
|
|
|
7
|
|
|
from gammapy.datasets import Datasets |
|
8
|
|
|
from gammapy.modeling.models import Models, SkyModel |
|
9
|
|
|
from pydantic import ValidationError |
|
10
|
|
|
|
|
11
|
|
|
from asgardpy.analysis.step import AnalysisStep |
|
12
|
|
|
from asgardpy.config.generator import AsgardpyConfig, gammapy_to_asgardpy_model_config |
|
13
|
|
|
from asgardpy.data.target import set_models |
|
14
|
|
|
from asgardpy.stats.stats import get_goodness_of_fit_stats |
|
15
|
|
|
|
|
16
|
|
|
log = logging.getLogger(__name__) |
|
17
|
|
|
|
|
18
|
|
|
__all__ = ["AsgardpyAnalysis"] |
|
19
|
|
|
|
|
20
|
|
|
|
|
21
|
|
|
class AsgardpyAnalysis: |
|
22
|
|
|
""" |
|
23
|
|
|
Config-driven high level analysis interface. |
|
24
|
|
|
|
|
25
|
|
|
It is initialized by default with a set of configuration parameters and |
|
26
|
|
|
values declared in an internal high level interface model, though the user |
|
27
|
|
|
can also provide configuration parameters passed as a nested dictionary at |
|
28
|
|
|
the moment of instantiation. In that case these parameters will overwrite |
|
29
|
|
|
the default values of those present in the configuration file. |
|
30
|
|
|
|
|
31
|
|
|
A specific example of an upgrade of the configuration parameters is when |
|
32
|
|
|
the Target Models information is provided as a path to a separate yaml file, |
|
33
|
|
|
which is readable with AsgardpyConfig. In this case, the configuration used |
|
34
|
|
|
in AsgardpyAnalysis is updated in the initialization step itself. |
|
35
|
|
|
|
|
36
|
|
|
Parameters |
|
37
|
|
|
---------- |
|
38
|
|
|
config : dict or `AsgardpyConfig` |
|
39
|
|
|
Configuration options following `AsgardpyConfig` schema |
|
40
|
|
|
""" |
|
41
|
|
|
|
|
42
|
|
|
def __init__(self, config): |
|
43
|
|
|
self.log = log |
|
44
|
|
|
self.config = config |
|
45
|
|
|
|
|
46
|
|
|
if self.config.target.models_file.is_file(): |
|
47
|
|
|
try: |
|
48
|
|
|
other_config = AsgardpyConfig.read(self.config.target.models_file) |
|
49
|
|
|
self.config = self.config.update(other_config) |
|
50
|
|
|
except ValidationError: |
|
51
|
|
|
self.config = gammapy_to_asgardpy_model_config( |
|
52
|
|
|
gammapy_model=self.config.target.models_file, |
|
53
|
|
|
asgardpy_config_file=self.config, |
|
54
|
|
|
) |
|
55
|
|
|
|
|
56
|
|
|
self.config.set_logging() |
|
57
|
|
|
self.datasets = Datasets() |
|
58
|
|
|
self.instrument_spectral_info = { |
|
59
|
|
|
"name": [], |
|
60
|
|
|
"spectral_energy_ranges": [], |
|
61
|
|
|
"en_bins": 0, |
|
62
|
|
|
"free_params": 0, |
|
63
|
|
|
"DoF": 0, |
|
64
|
|
|
} |
|
65
|
|
|
self.dataset_name_list = [] |
|
66
|
|
|
|
|
67
|
|
|
self.final_model = Models() |
|
68
|
|
|
self.final_data_products = ["fit", "fit_result", "flux_points", "model_deabs", "flux_points_deabs"] |
|
69
|
|
|
|
|
70
|
|
|
for data_product in self.final_data_products: |
|
71
|
|
|
setattr(self, data_product, None) |
|
72
|
|
|
|
|
73
|
|
|
@property |
|
74
|
|
|
def models(self): |
|
75
|
|
|
""" |
|
76
|
|
|
Display the assigned Models. |
|
77
|
|
|
""" |
|
78
|
|
|
if not self.datasets: |
|
79
|
|
|
raise RuntimeError("No datasets defined. Impossible to set models.") |
|
80
|
|
|
return self.datasets.models |
|
81
|
|
|
|
|
82
|
|
|
@property |
|
83
|
|
|
def config(self): |
|
84
|
|
|
""" |
|
85
|
|
|
Analysis configuration (`AsgardpyConfig`) |
|
86
|
|
|
""" |
|
87
|
|
|
return self._config |
|
88
|
|
|
|
|
89
|
|
|
@config.setter |
|
90
|
|
|
def config(self, value): |
|
91
|
|
|
if isinstance(value, dict): |
|
92
|
|
|
self._config = AsgardpyConfig(**value) |
|
93
|
|
|
elif isinstance(value, AsgardpyConfig): |
|
94
|
|
|
self._config = value |
|
95
|
|
|
else: |
|
96
|
|
|
raise TypeError("config must be dict or AsgardpyConfig.") |
|
97
|
|
|
|
|
98
|
|
|
def update_models_list(self, models_list): |
|
99
|
|
|
""" |
|
100
|
|
|
This function updates the final_model object with a given list of |
|
101
|
|
|
models, only if the target source has a Spatial model included. |
|
102
|
|
|
|
|
103
|
|
|
This step is only valid for 3D Datasets, and might need reconsideration |
|
104
|
|
|
in the future. |
|
105
|
|
|
""" |
|
106
|
|
|
if models_list: |
|
107
|
|
|
target_source_model = models_list[self.config.target.source_name] |
|
108
|
|
|
|
|
109
|
|
|
if target_source_model.spatial_model: |
|
110
|
|
|
for model_ in models_list: |
|
111
|
|
|
self.final_model.append(model_) |
|
112
|
|
|
else: # pragma: no cover |
|
113
|
|
|
self.log.info( |
|
114
|
|
|
"The target source %s only has spectral model", |
|
115
|
|
|
self.config.target.source_name, |
|
116
|
|
|
) |
|
117
|
|
|
|
|
118
|
|
|
def get_correct_intrinsic_model(self): |
|
119
|
|
|
""" |
|
120
|
|
|
After running the Fit analysis step, one can retrieve the correct |
|
121
|
|
|
covariance matrix for only the intrinsic or EBL-deabsorbed spectra. |
|
122
|
|
|
|
|
123
|
|
|
This function will be redundant in Gammapy v1.3 |
|
124
|
|
|
""" |
|
125
|
|
|
temp_model = self.final_model[0].spectral_model.model1 |
|
126
|
|
|
|
|
127
|
|
|
cov_matrix = self.fit.covariance( |
|
128
|
|
|
datasets=self.datasets, optimize_result=self.fit_result.optimize_result |
|
129
|
|
|
).matrix |
|
130
|
|
|
|
|
131
|
|
|
temp_model.covariance = cov_matrix[: len(temp_model.parameters), : len(temp_model.parameters)] |
|
132
|
|
|
|
|
133
|
|
|
self.model_deabs = SkyModel( |
|
134
|
|
|
spectral_model=temp_model, |
|
135
|
|
|
name=self.final_model[0].name, |
|
136
|
|
|
datasets_names=self.final_model[0].datasets_names, |
|
137
|
|
|
) |
|
138
|
|
|
|
|
139
|
|
|
def get_correct_ebl_deabs_flux_points(self): |
|
140
|
|
|
""" |
|
141
|
|
|
After running the get_correct_intrinsic_model function, this function |
|
142
|
|
|
will re-run the flux-points analysis step again, by using only the |
|
143
|
|
|
intrinsic model as the reference spectral model. |
|
144
|
|
|
|
|
145
|
|
|
This function will be redundant in Gammapy v1.3 |
|
146
|
|
|
""" |
|
147
|
|
|
temp_fp = self.flux_points |
|
148
|
|
|
self.flux_points = None |
|
149
|
|
|
|
|
150
|
|
|
if not self.model_deabs: |
|
151
|
|
|
self.get_correct_intrinsic_model() |
|
152
|
|
|
|
|
153
|
|
|
self.run(["flux-points"]) |
|
154
|
|
|
|
|
155
|
|
|
for fp in self.flux_points: |
|
156
|
|
|
fp._models = self.model_deabs |
|
157
|
|
|
fp._reference_model = self.model_deabs |
|
158
|
|
|
|
|
159
|
|
|
self.flux_points_deabs = self.flux_points |
|
160
|
|
|
self.flux_points = temp_fp |
|
161
|
|
|
|
|
162
|
|
|
def add_to_instrument_info(self, info_dict): |
|
163
|
|
|
""" |
|
164
|
|
|
Update the name, Degrees of Freedom and spectral energy ranges for each |
|
165
|
|
|
instrument Datasets, to be used for the DL4 to DL5 processes. |
|
166
|
|
|
""" |
|
167
|
|
|
for name in info_dict["name"]: |
|
168
|
|
|
self.instrument_spectral_info["name"].append(name) |
|
169
|
|
|
|
|
170
|
|
|
for edges in info_dict["spectral_energy_ranges"]: |
|
171
|
|
|
self.instrument_spectral_info["spectral_energy_ranges"].append(edges) |
|
172
|
|
|
|
|
173
|
|
|
self.instrument_spectral_info["en_bins"] += info_dict["en_bins"] |
|
174
|
|
|
self.instrument_spectral_info["free_params"] += info_dict["free_params"] |
|
175
|
|
|
|
|
176
|
|
|
def update_dof_value(self): |
|
177
|
|
|
""" |
|
178
|
|
|
Simple function to update total Degrees of Freedom value in the |
|
179
|
|
|
instrument_spectral_info dict from a filled final_model object. |
|
180
|
|
|
""" |
|
181
|
|
|
if len(self.final_model) > 0: |
|
182
|
|
|
# Add to the total number of free model parameters |
|
183
|
|
|
n_free_params = len(list(self.final_model.parameters.free_parameters)) |
|
184
|
|
|
self.instrument_spectral_info["free_params"] += n_free_params |
|
185
|
|
|
|
|
186
|
|
|
# Get the final degrees of freedom as en_bins - free_params |
|
187
|
|
|
self.instrument_spectral_info["DoF"] = ( |
|
188
|
|
|
self.instrument_spectral_info["en_bins"] - self.instrument_spectral_info["free_params"] |
|
189
|
|
|
) |
|
190
|
|
|
|
|
191
|
|
|
def run(self, steps=None, **kwargs): |
|
192
|
|
|
""" |
|
193
|
|
|
Main function to run the AnalaysisSteps provided. |
|
194
|
|
|
|
|
195
|
|
|
Currently overwrite option is used from the value in AsgardpyConfig, |
|
196
|
|
|
and is True by default. |
|
197
|
|
|
""" |
|
198
|
|
|
if steps is None: |
|
199
|
|
|
steps = self.config.general.steps |
|
200
|
|
|
self.overwrite = self.config.general.overwrite |
|
201
|
|
|
|
|
202
|
|
|
dl3_dl4_steps = [step for step in steps if "datasets" in step] |
|
203
|
|
|
dl4_dl5_steps = [step for step in steps if "datasets" not in step] |
|
204
|
|
|
|
|
205
|
|
|
if len(dl3_dl4_steps) > 0: |
|
206
|
|
|
self.log.info("Perform DL3 to DL4 process!") |
|
207
|
|
|
|
|
208
|
|
|
for step in dl3_dl4_steps: |
|
209
|
|
|
analysis_step = AnalysisStep.create(step, self.config, **kwargs) |
|
210
|
|
|
|
|
211
|
|
|
datasets_list, models_list, instrument_spectral_info = analysis_step.run() |
|
212
|
|
|
|
|
213
|
|
|
self.update_models_list(models_list) |
|
214
|
|
|
|
|
215
|
|
|
# To get all datasets_names from the datasets and update the final datasets list |
|
216
|
|
|
for data in datasets_list: |
|
217
|
|
|
if data.name not in self.dataset_name_list: |
|
218
|
|
|
self.dataset_name_list.append(data.name) |
|
219
|
|
|
self.datasets.append(data) |
|
220
|
|
|
|
|
221
|
|
|
self.add_to_instrument_info(instrument_spectral_info) |
|
222
|
|
|
|
|
223
|
|
|
self.datasets, self.final_model = set_models( |
|
224
|
|
|
self.config.target, |
|
225
|
|
|
self.datasets, |
|
226
|
|
|
self.dataset_name_list, |
|
227
|
|
|
models=self.final_model, |
|
228
|
|
|
) |
|
229
|
|
|
self.log.info("Models have been associated with the Datasets") |
|
230
|
|
|
|
|
231
|
|
|
self.update_dof_value() |
|
232
|
|
|
|
|
233
|
|
|
if len(dl4_dl5_steps) > 0: |
|
234
|
|
|
self.log.info("Perform DL4 to DL5 processes!") |
|
235
|
|
|
|
|
236
|
|
|
for step in dl4_dl5_steps: |
|
237
|
|
|
analysis_step = AnalysisStep.create(step, self.config, **kwargs) |
|
238
|
|
|
|
|
239
|
|
|
analysis_step.run(datasets=self.datasets, instrument_spectral_info=self.instrument_spectral_info) |
|
240
|
|
|
|
|
241
|
|
|
# Update the final data product objects |
|
242
|
|
|
for data_product in self.final_data_products: |
|
243
|
|
|
if hasattr(analysis_step, data_product): |
|
244
|
|
|
setattr(self, data_product, getattr(analysis_step, data_product)) |
|
245
|
|
|
|
|
246
|
|
|
if self.fit_result: |
|
247
|
|
|
self.instrument_spectral_info, message = get_goodness_of_fit_stats( |
|
248
|
|
|
self.datasets, self.instrument_spectral_info |
|
249
|
|
|
) |
|
250
|
|
|
self.log.info(message) |
|
251
|
|
|
|
|
252
|
|
|
# keep these methods to be backward compatible |
|
253
|
|
|
def get_1d_datasets(self): |
|
254
|
|
|
"""Produce stacked 1D datasets.""" |
|
255
|
|
|
self.run(steps=["datasets-1d"]) |
|
256
|
|
|
|
|
257
|
|
|
def get_3d_datasets(self): |
|
258
|
|
|
"""Produce stacked 3D datasets.""" |
|
259
|
|
|
self.run(steps=["datasets-3d"]) |
|
260
|
|
|
|
|
261
|
|
|
def run_fit(self): |
|
262
|
|
|
"""Fitting reduced datasets to model.""" |
|
263
|
|
|
self.run(steps=["fit"]) |
|
264
|
|
|
|
|
265
|
|
|
def get_flux_points(self): |
|
266
|
|
|
"""Calculate flux points for a specific model component.""" |
|
267
|
|
|
self.run(steps=["flux-points"]) |
|
268
|
|
|
|
|
269
|
|
|
def update_config(self, config): |
|
270
|
|
|
"""Update the primary config with another config.""" |
|
271
|
|
|
self.config = self.config.update(config=config) |
|
272
|
|
|
|