| 1 |  |  | """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | Module for performing some statistic functions. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  | """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | import numpy as np | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  | from gammapy.modeling.models import CompoundSpectralModel | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  | from gammapy.stats.fit_statistics import cash, wstat | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  | from scipy.stats import chi2, norm | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  | __all__ = [ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  |     "check_model_preference_aic", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  |     "check_model_preference_lrt", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  |     "fetch_pivot_energy", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  |     "get_chi2_sig_pval", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  |     "get_goodness_of_fit_stats", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  |     "get_ts_target", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  | ] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  | def get_chi2_sig_pval(test_stat, ndof): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  |     Using the log-likelihood value for a model fitting to data, along with the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  |     total degrees of freedom, evaluate the significance value in terms of gaussian | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  |     distribution along with one-tailed p-value for the fitting statistics. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |     In Gammapy, for 3D analysis, cash statistics is used, while for 1D analysis, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  |     wstat statistics is used. Check the documentation for more details | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  |     https://docs.gammapy.org/1.2/user-guide/stats/index.html | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |     test_stat: float | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  |         The test statistic (-2 ln L) value of the fitting. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  |     ndof: int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |         Total number of degrees of freedom. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  |     Returns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  |     ------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |     chi2_sig: float | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |         significance (Chi2) of the likelihood of fit model estimated in | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  |         Gaussian distribution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  |     pval: float | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  |         p-value for the model fitting | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  |     pval = chi2.sf(test_stat, ndof) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  |     chi2_sig = norm.isf(pval / 2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |     return chi2_sig, pval | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  | def check_model_preference_lrt(test_stat_1, test_stat_2, ndof_1, ndof_2): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |     Log-likelihood ratio test. Checking the preference of a "nested" spectral | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |     model2 (observed), over a primary model1. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  |     test_stat_1: float | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |         The test statistic (-2 ln L) of the Fit result of the primary spectral model. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |     test_stat_2: float | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |         The test statistic (-2 ln L) of the Fit result of the nested spectral model. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |     ndof_1: int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  |         Number of degrees of freedom for the primary model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |     ndof_2: int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |         Number of degrees of freedom for the nested model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |     Returns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |     ------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  |     p_value: float | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |         p-value for the ratio of the likelihoods | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  |     gaussian_sigmas: float | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  |         significance (Chi2) of the ratio of the likelihoods estimated in | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |         Gaussian distribution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |     n_dof: int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |         number of degrees of freedom or free parameters between primary and | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  |         nested model. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |     n_dof = ndof_1 - ndof_2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  |     if n_dof < 1: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |         print(f"DoF is lower in {ndof_1} compared to {ndof_2}") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |         return np.nan, np.nan, n_dof | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |     gaussian_sigmas, p_value = get_chi2_sig_pval(test_stat_1 - test_stat_2, n_dof) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |     return p_value, gaussian_sigmas, n_dof | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  | def check_model_preference_aic(list_stat, list_dof): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  |     Akaike Information Criterion (AIC) preference over a list of stat and DoF | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |     (degree of freedom) to get relative likelihood of a given list of best-fit | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  |     models. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |     list_wstat: list | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |         List of stat or -2 Log likelihood values for a list of models. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |     list_dof: list | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |         List of degrees of freedom or list of free parameters, for a list of models. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  |     Returns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  |     ------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |     list_rel_p: list | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |         List of relative likelihood probabilities, for a list of models. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |     list_aic_stat = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |     for stat, dof in zip(list_stat, list_dof, strict=True): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |         aic_stat = stat + 2 * dof | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |         list_aic_stat.append(aic_stat) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |     list_aic_stat = np.array(list_aic_stat) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |     aic_stat_min = np.min(list_aic_stat) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |     list_b_stat = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |     for aic in list_aic_stat: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |         b_stat = np.exp((aic_stat_min - aic) / 2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |         list_b_stat.append(b_stat) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |     list_b_stat = np.array(list_b_stat) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |     list_rel_p = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |     for b_stat in list_b_stat: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |         rel_p = b_stat / np.sum(list_b_stat) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |         list_rel_p.append(rel_p) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |     list_rel_p = np.array(list_rel_p) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |     return list_rel_p | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  | def get_goodness_of_fit_stats(datasets, instrument_spectral_info): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |     Evaluating the Goodness of Fit statistics of the fitting of the model to | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |     the dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |     We first use the get_ts_target function to get the total test statistic for | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |     the (observed) best fit of the model to the data, and the (expected) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |     perfect fit of model and data (model = data), for the given target source | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |     region/pixel. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |     We then evaluate the total number of Degrees of Freedom for the Fit as the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |     difference between the number of relevant energy bins used in the evaluation | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |     and the number of free model parameters. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |     The fit statistics difference is used as the test statistic value for | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |     get_chi2_sig_pval function along with the total number of degrees of freedom | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |     to get the final statistics for the goodness of fit. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |     The fit statistics information is updated in the dict object provided and | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |     a logging message is passed. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |     Parameter | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |     --------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |     datasets: `gammapy.datasets.Datasets` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |         List of Datasets object, which can contain 3D and/or 1D datasets | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |     instrument_spectral_info: dict | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |         Dict of information for storing relevant fit stats | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |     Return | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |     ------ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |     instrument_spectral_info: dict | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |         Filled Dict of information with relevant fit statistics | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |     stat_message: str | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |         String for logging the fit statistics | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |     stat_best_fit, stat_max_fit = get_ts_target(datasets) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |     instrument_spectral_info["max_fit_stat"] = stat_max_fit | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  |     instrument_spectral_info["best_fit_stat"] = stat_best_fit | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  |     ndof = instrument_spectral_info["DoF"] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |     stat_diff_gof = stat_best_fit - stat_max_fit | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |     fit_chi2_sig, fit_pval = get_chi2_sig_pval(stat_diff_gof, ndof) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |     instrument_spectral_info["fit_chi2_sig"] = fit_chi2_sig | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |     instrument_spectral_info["fit_pval"] = fit_pval | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |     stat_message = "The Chi2/dof value of the goodness of Fit is " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |     stat_message += f"{stat_diff_gof:.2f}/{ndof}\nand the p-value is {fit_pval:.3e} " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |     stat_message += f"and in Significance {fit_chi2_sig:.2f} sigmas" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |     stat_message += f"\nwith best fit TS (Observed) as {stat_best_fit:.3f} " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  |     stat_message += f"and max fit TS (Expected) as {stat_max_fit:.3f}" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |     return instrument_spectral_info, stat_message | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 |  |  | def get_ts_target(datasets): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 190 |  |  |     From a given list of DL4 datasets, with assumed associated models, estimate | 
            
                                                                                                            
                            
            
                                    
            
            
                | 191 |  |  |     the total test statistic values, in the given target source region/pixel, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 192 |  |  |     for the (observed) best fit of the model to the data, and the (expected) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 193 |  |  |     perfect fit of model and data (model = data). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 194 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 195 |  |  |     For consistency in the evaluation of the statistic values, we will use the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 196 |  |  |     basic Fit Statistic functions in Gammapy for Poisson Data: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 197 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |     * `cash <https://docs.gammapy.org/1.2/api/gammapy.stats.cash.html>`_ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  |     * `wstat <https://docs.gammapy.org/1.2/api/gammapy.stats.wstat.html>`_ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 |  |  |     For the different type of Statistics used in Gammapy for 3D/1D datasets, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  |     and for our use case of getting the best fit and perfect fit, we will pass | 
            
                                                                                                            
                            
            
                                    
            
            
                | 204 |  |  |     the appropriate values, by adapting to the following methods, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 205 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 206 |  |  |     * Best Fit (Observed): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 207 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 208 |  |  |         * `Cash stat_array <https://docs.gammapy.org/1.2/api/gammapy.datasets.MapDataset.html#gammapy.datasets.MapDataset.stat_array # noqa>`_ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 209 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 210 |  |  |         * `Wstat stat_array <https://docs.gammapy.org/1.2/api/gammapy.datasets.MapDatasetOnOff.html#gammapy.datasets.MapDatasetOnOff.stat_array # noqa>`_ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 211 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 212 |  |  |     * Perfect Fit (Expected): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 213 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 214 |  |  |         * `Cash stat_max <https://docs.gammapy.org/1.2/api/gammapy.stats.CashCountsStatistic.html#gammapy.stats.CashCountsStatistic.stat_max # noqa>`_ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 215 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 216 |  |  |         * `Wstat stat_max <https://docs.gammapy.org/1.2/api/gammapy.stats.WStatCountsStatistic.html#gammapy.stats.WStatCountsStatistic.stat_max # noqa>`_ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 217 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 218 |  |  |     Parameter | 
            
                                                                                                            
                            
            
                                    
            
            
                | 219 |  |  |     --------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 220 |  |  |     datasets: `gammapy.datasets.Datasets` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 221 |  |  |         List of Datasets object, which can contain 3D and/or 1D datasets | 
            
                                                                                                            
                            
            
                                    
            
            
                | 222 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 223 |  |  |     Return | 
            
                                                                                                            
                            
            
                                    
            
            
                | 224 |  |  |     ------ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 225 |  |  |     stat_best_fit: float | 
            
                                                                                                            
                            
            
                                    
            
            
                | 226 |  |  |         Total sum of test statistic of the best fit of model to data, summed | 
            
                                                                                                            
                            
            
                                    
            
            
                | 227 |  |  |         over all energy bins. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 228 |  |  |     stat_max_fit: float | 
            
                                                                                                            
                            
            
                                    
            
            
                | 229 |  |  |         Test statistic difference of the perfect fit of model to data summed | 
            
                                                                                                            
                            
            
                                    
            
            
                | 230 |  |  |         over all energy bins. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 231 |  |  |     """  # noqa | 
            
                                                                                                            
                            
            
                                    
            
            
                | 232 |  |  |     stat_best_fit = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 233 |  |  |     stat_max_fit = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 234 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 235 |  |  |     for data in datasets: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 236 |  |  |         if data.stat_type != "chi2": | 
            
                                                                                                            
                            
            
                                    
            
            
                | 237 |  |  |             # Assuming that the Counts Map is created with the target source as its center | 
            
                                                                                                            
                            
            
                                    
            
            
                | 238 |  |  |             region = data.counts.geom.center_skydir | 
            
                                                                                                            
                            
            
                                    
            
            
                | 239 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 240 |  |  |             if data.stat_type == "cash": | 
            
                                                                                                            
                            
            
                                    
            
            
                | 241 |  |  |                 counts_on = (data.counts.copy() * data.mask).get_spectrum(region).data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 242 |  |  |                 mu_on = (data.npred() * data.mask).get_spectrum(region).data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 243 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 244 |  |  |                 stat_best_fit += np.nansum(cash(n_on=counts_on, mu_on=mu_on).ravel()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 245 |  |  |                 stat_max_fit += np.nansum(cash(n_on=counts_on, mu_on=counts_on).ravel()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 246 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 247 |  |  |             elif data.stat_type == "wstat": | 
            
                                                                                                            
                            
            
                                    
            
            
                | 248 |  |  |                 counts_on = (data.counts.copy() * data.mask).get_spectrum(region).data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 249 |  |  |                 counts_off = np.nan_to_num((data.counts_off * data.mask).get_spectrum(region)).data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 250 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 251 |  |  |                 # alpha is evaluated by acceptance ratios, and | 
            
                                                                                                            
                            
            
                                    
            
            
                | 252 |  |  |                 # Background is evaluated with given alpha and counts_off, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 253 |  |  |                 # but for alpha to be of the same shape (in the target region), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 254 |  |  |                 # it will be reevaluated | 
            
                                                                                                            
                            
            
                                    
            
            
                | 255 |  |  |                 bkg = np.nan_to_num((data.background * data.mask).get_spectrum(region)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 256 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 257 |  |  |                 with np.errstate(invalid="ignore", divide="ignore"): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 258 |  |  |                     alpha = bkg / counts_off | 
            
                                                                                                            
                            
            
                                    
            
            
                | 259 |  |  |                 mu_signal = np.nan_to_num((data.npred_signal() * data.mask).get_spectrum(region)).data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 260 |  |  |                 max_pred = counts_on - bkg | 
            
                                                                                                            
                            
            
                                    
            
            
                | 261 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 262 |  |  |                 stat_best_fit += np.nansum(wstat(n_on=counts_on, n_off=counts_off, alpha=alpha, mu_sig=mu_signal)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 263 |  |  |                 stat_max_fit += np.nansum(wstat(n_on=counts_on, n_off=counts_off, alpha=alpha, mu_sig=max_pred)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 264 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 265 |  |  |             # For FluxxPointsDataset | 
            
                                                                                                            
                            
            
                                    
            
            
                | 266 |  |  |             stat_best_fit += np.nansum(data.stat_array()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 267 |  |  |             stat_max_fit += len(data.data.dnde.data) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 268 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 269 |  |  |     return stat_best_fit, stat_max_fit | 
            
                                                                                                            
                            
            
                                    
            
            
                | 270 |  |  |  | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 271 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 272 |  |  | def fetch_pivot_energy(analysis): | 
            
                                                        
            
                                    
            
            
                | 273 |  |  |     """ | 
            
                                                        
            
                                    
            
            
                | 274 |  |  |     Using an 'AsgardpyAnalysis' object to get the pivot energy for a given dataset | 
            
                                                        
            
                                    
            
            
                | 275 |  |  |     and fit model, using the pivot_energy function. | 
            
                                                        
            
                                    
            
            
                | 276 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 277 |  |  |     In Gammapy v1.2, use instead | 
            
                                                        
            
                                    
            
            
                | 278 |  |  |     'analysis.fit_result.models[0].spectral_model.model1.pivot_energy' to get this value. | 
            
                                                        
            
                                    
            
            
                | 279 |  |  |     However, it still needs some internal checks to confirm. | 
            
                                                        
            
                                    
            
            
                | 280 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 281 |  |  |     Returns | 
            
                                                        
            
                                    
            
            
                | 282 |  |  |     ------- | 
            
                                                        
            
                                    
            
            
                | 283 |  |  |     pivot energy : `~astropy.units.Quantity` | 
            
                                                        
            
                                    
            
            
                | 284 |  |  |         The energy at which the statistical error in the computed flux is smallest. | 
            
                                                        
            
                                    
            
            
                | 285 |  |  |         If no minimum is found, NaN will be returned. | 
            
                                                        
            
                                    
            
            
                | 286 |  |  |     """ | 
            
                                                        
            
                                    
            
            
                | 287 |  |  |     # Check if DL4 datasets are created, and if not, only run steps till Fit | 
            
                                                        
            
                                    
            
            
                | 288 |  |  |     if len(analysis.datasets) == 0: | 
            
                                                        
            
                                    
            
            
                | 289 |  |  |         steps = [step for step in analysis.config.general.steps if step != "flux-points"] | 
            
                                                        
            
                                    
            
            
                | 290 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 291 |  |  |         analysis.run(steps) | 
            
                                                        
            
                                    
            
            
                | 292 |  |  |     else: | 
            
                                                        
            
                                    
            
            
                | 293 |  |  |         analysis.run(["fit"]) | 
            
                                                        
            
                                    
            
            
                | 294 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 295 |  |  |     # Assuming EBL model is present | 
            
                                                        
            
                                    
            
            
                | 296 |  |  |     if isinstance(analysis.datasets[0].models[0].spectral_model, CompoundSpectralModel): | 
            
                                                        
            
                                    
            
            
                | 297 |  |  |         temp_model = analysis.datasets[0].models[0].spectral_model.model1 | 
            
                                                        
            
                                    
            
            
                | 298 |  |  |     else: | 
            
                                                        
            
                                    
            
            
                | 299 |  |  |         temp_model = analysis.datasets[0].models[0].spectral_model | 
            
                                                        
            
                                    
            
            
                | 300 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 301 |  |  |     # Not sure how this is reflected internally in Gammapy 1.2 | 
            
                                                        
            
                                    
            
            
                | 302 |  |  |     # Fetching the covariance matrix for the given dataset and optimized fit model | 
            
                                                        
            
                                    
            
            
                | 303 |  |  |     cov_matrix = analysis.fit.covariance( | 
            
                                                        
            
                                    
            
            
                | 304 |  |  |         datasets=analysis.datasets, optimize_result=analysis.fit_result.optimize_result | 
            
                                                        
            
                                    
            
            
                | 305 |  |  |     ).matrix | 
            
                                                        
            
                                    
            
            
                | 306 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 307 |  |  |     temp_model.covariance = cov_matrix[: len(temp_model.parameters), : len(temp_model.parameters)] | 
            
                                                        
            
                                    
            
            
                | 308 |  |  |  | 
            
                                                        
            
                                    
            
            
                | 309 |  |  |     return temp_model.pivot_energy | 
            
                                                        
            
                                    
            
            
                | 310 |  |  |  |