1
|
|
|
""" |
2
|
|
|
Main AsgardpyConfig Generator Module |
3
|
|
|
""" |
4
|
|
|
|
5
|
|
|
import json |
6
|
|
|
import logging |
7
|
|
|
import os |
8
|
|
|
from enum import Enum |
9
|
|
|
from pathlib import Path |
10
|
|
|
|
11
|
|
|
import yaml |
12
|
|
|
from gammapy.modeling.models import CompoundSpectralModel |
13
|
|
|
from gammapy.utils.scripts import make_path, read_yaml |
14
|
|
|
|
15
|
|
|
from asgardpy.analysis.step_base import AnalysisStepEnum |
16
|
|
|
from asgardpy.base import BaseConfig, PathType |
17
|
|
|
from asgardpy.config.operations import ( |
18
|
|
|
CONFIG_PATH, |
19
|
|
|
check_gammapy_model, |
20
|
|
|
compound_model_dict_converstion, |
21
|
|
|
deep_update, |
22
|
|
|
recursive_merge_dicts, |
23
|
|
|
) |
24
|
|
|
from asgardpy.data import ( |
25
|
|
|
Dataset1DConfig, |
26
|
|
|
Dataset3DConfig, |
27
|
|
|
FitConfig, |
28
|
|
|
FluxPointsConfig, |
29
|
|
|
Target, |
30
|
|
|
) |
31
|
|
|
|
32
|
|
|
__all__ = [ |
33
|
|
|
"AsgardpyConfig", |
34
|
|
|
"GeneralConfig", |
35
|
|
|
"gammapy_model_to_asgardpy_model_config", |
36
|
|
|
"write_asgardpy_model_to_file", |
37
|
|
|
] |
38
|
|
|
|
39
|
|
|
log = logging.getLogger(__name__) |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
# Other general config params |
43
|
|
|
class LogConfig(BaseConfig): |
44
|
|
|
"""Config section for main logging information.""" |
45
|
|
|
|
46
|
|
|
level: str = "info" |
47
|
|
|
filename: str = "" |
48
|
|
|
filemode: str = "w" |
49
|
|
|
format: str = "" |
50
|
|
|
datefmt: str = "" |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
class ParallelBackendEnum(str, Enum): |
54
|
|
|
"""Config section for list of parallel processing backend methods.""" |
55
|
|
|
|
56
|
|
|
multi = "multiprocessing" |
57
|
|
|
ray = "ray" |
58
|
|
|
|
59
|
|
|
|
60
|
|
|
class GeneralConfig(BaseConfig): |
61
|
|
|
"""Config section for general information for running AsgardpyAnalysis.""" |
62
|
|
|
|
63
|
|
|
log: LogConfig = LogConfig() |
64
|
|
|
outdir: PathType = "None" |
65
|
|
|
n_jobs: int = 1 |
66
|
|
|
parallel_backend: ParallelBackendEnum = ParallelBackendEnum.multi |
67
|
|
|
steps: list[AnalysisStepEnum] = [] |
68
|
|
|
overwrite: bool = True |
69
|
|
|
stacked_dataset: bool = False |
70
|
|
|
|
71
|
|
|
|
72
|
|
|
def check_config(config): |
73
|
|
|
""" |
74
|
|
|
For a given object type, try to read it as an AsgardpyConfig object. |
75
|
|
|
""" |
76
|
|
|
if isinstance(config, str | Path): |
77
|
|
|
if Path(config).is_file(): |
78
|
|
|
AConfig = AsgardpyConfig.read(config) |
79
|
|
|
else: |
80
|
|
|
AConfig = AsgardpyConfig.from_yaml(config) |
81
|
|
|
elif isinstance(config, AsgardpyConfig): |
82
|
|
|
AConfig = config |
83
|
|
|
else: |
84
|
|
|
raise TypeError(f"Invalid type: {config}") |
85
|
|
|
|
86
|
|
|
return AConfig |
87
|
|
|
|
88
|
|
|
|
89
|
|
|
def gammapy_model_to_asgardpy_model_config(gammapy_model, asgardpy_config_file=None, recursive_merge=True): |
90
|
|
|
""" |
91
|
|
|
Read the Gammapy Models object and save it as AsgardpyConfig object. |
92
|
|
|
|
93
|
|
|
The gammapy_model object may be a YAML config filename/path/object or a |
94
|
|
|
Gammapy Models object itself. |
95
|
|
|
|
96
|
|
|
Return |
97
|
|
|
------ |
98
|
|
|
asgardpy_config: `asgardpy.config.generator.AsgardpyConfig` |
99
|
|
|
Updated AsgardpyConfig object |
100
|
|
|
""" |
101
|
|
|
|
102
|
|
|
models_gpy = check_gammapy_model(gammapy_model) |
103
|
|
|
|
104
|
|
|
models_gpy_dict = models_gpy.to_dict() |
105
|
|
|
|
106
|
|
|
if not asgardpy_config_file: |
107
|
|
|
asgardpy_config = AsgardpyConfig() # Default object |
108
|
|
|
# Remove any name values in the model dict |
109
|
|
|
models_gpy_dict["components"][0].pop("datasets_names", None) |
110
|
|
|
models_gpy_dict["components"][0].pop("name", None) |
111
|
|
|
else: |
112
|
|
|
asgardpy_config = check_config(asgardpy_config_file) |
113
|
|
|
|
114
|
|
|
# For EBL part only |
115
|
|
|
if "model1" in models_gpy_dict["components"][0]["spectral"].keys(): |
116
|
|
|
models_gpy_dict["components"][0]["spectral"] = compound_model_dict_converstion( |
117
|
|
|
models_gpy_dict["components"][0]["spectral"] |
118
|
|
|
) |
119
|
|
|
|
120
|
|
|
asgardpy_config_target_dict = asgardpy_config.model_dump()["target"] |
121
|
|
|
|
122
|
|
|
if recursive_merge: |
123
|
|
|
temp_target_dict = recursive_merge_dicts(asgardpy_config_target_dict, models_gpy_dict) |
124
|
|
|
else: |
125
|
|
|
# Use when there are nans present in the other config file, which are |
126
|
|
|
# the defaults in Gammapy, but NOT in Asgardpy. |
127
|
|
|
# E.g. test data Fermi-3fhl-crab model file |
128
|
|
|
temp_target_dict = deep_update(asgardpy_config_target_dict, models_gpy_dict) |
129
|
|
|
|
130
|
|
|
asgardpy_config.target = temp_target_dict |
131
|
|
|
|
132
|
|
|
return asgardpy_config |
133
|
|
|
|
134
|
|
|
|
135
|
|
|
def write_asgardpy_model_to_file(gammapy_model, output_file=None, recursive_merge=True): |
136
|
|
|
""" |
137
|
|
|
Read the Gammapy Models object and save it as AsgardpyConfig YAML file |
138
|
|
|
containing only the Model parameters, similar to the model templates |
139
|
|
|
available. |
140
|
|
|
""" |
141
|
|
|
gammapy_model = check_gammapy_model(gammapy_model) |
142
|
|
|
|
143
|
|
|
asgardpy_config = gammapy_model_to_asgardpy_model_config( |
144
|
|
|
gammapy_model=gammapy_model[0], |
145
|
|
|
asgardpy_config_file=None, |
146
|
|
|
recursive_merge=recursive_merge, |
147
|
|
|
) |
148
|
|
|
|
149
|
|
|
if not output_file: |
150
|
|
|
if isinstance(gammapy_model[0].spectral_model, CompoundSpectralModel): |
151
|
|
|
model_tag = gammapy_model[0].spectral_model.model1.tag[1] + "_ebl" |
152
|
|
|
else: |
153
|
|
|
model_tag = gammapy_model[0].spectral_model.tag[1] |
154
|
|
|
|
155
|
|
|
output_file = CONFIG_PATH / f"model_templates/model_template_{model_tag}.yaml" |
156
|
|
|
os.path.expandvars(output_file) |
157
|
|
|
else: |
158
|
|
|
if not isinstance(output_file, Path): |
159
|
|
|
output_file = Path(os.path.expandvars(output_file)) |
160
|
|
|
|
161
|
|
|
temp_ = asgardpy_config.model_dump(exclude_defaults=True) |
162
|
|
|
temp_["target"].pop("models_file", None) |
163
|
|
|
|
164
|
|
|
if isinstance(gammapy_model[0].spectral_model, CompoundSpectralModel): |
165
|
|
|
temp_["target"]["components"][0]["spectral"]["ebl_abs"]["filename"] = str( |
166
|
|
|
temp_["target"]["components"][0]["spectral"]["ebl_abs"]["filename"] |
167
|
|
|
) |
168
|
|
|
else: |
169
|
|
|
temp_["target"]["components"][0]["spectral"].pop("ebl_abs", None) |
170
|
|
|
|
171
|
|
|
yaml_ = yaml.dump( |
172
|
|
|
temp_, |
173
|
|
|
sort_keys=False, |
174
|
|
|
indent=4, |
175
|
|
|
width=80, |
176
|
|
|
default_flow_style=None, |
177
|
|
|
) |
178
|
|
|
|
179
|
|
|
output_file.write_text(yaml_) |
180
|
|
|
|
181
|
|
|
|
182
|
|
|
# Combine everything! |
183
|
|
|
class AsgardpyConfig(BaseConfig): |
184
|
|
|
""" |
185
|
|
|
Asgardpy analysis configuration, based on Gammapy Analysis Config. |
186
|
|
|
""" |
187
|
|
|
|
188
|
|
|
general: GeneralConfig = GeneralConfig() |
189
|
|
|
|
190
|
|
|
target: Target = Target() |
191
|
|
|
|
192
|
|
|
dataset3d: Dataset3DConfig = Dataset3DConfig() |
193
|
|
|
dataset1d: Dataset1DConfig = Dataset1DConfig() |
194
|
|
|
|
195
|
|
|
fit_params: FitConfig = FitConfig() |
196
|
|
|
flux_points_params: FluxPointsConfig = FluxPointsConfig() |
197
|
|
|
|
198
|
|
|
def __str__(self): |
199
|
|
|
""" |
200
|
|
|
Display settings in pretty YAML format. |
201
|
|
|
""" |
202
|
|
|
info = self.__class__.__name__ + "\n\n\t" |
203
|
|
|
data = self.to_yaml() |
204
|
|
|
data = data.replace("\n", "\n\t") |
205
|
|
|
info += data |
206
|
|
|
return info.expandtabs(tabsize=4) |
207
|
|
|
|
208
|
|
|
@classmethod |
209
|
|
|
def read(cls, path): |
210
|
|
|
""" |
211
|
|
|
Reads from YAML file. |
212
|
|
|
""" |
213
|
|
|
config = read_yaml(path) |
214
|
|
|
return AsgardpyConfig(**config) |
215
|
|
|
|
216
|
|
|
@classmethod |
217
|
|
|
def from_yaml(cls, config_str): |
218
|
|
|
""" |
219
|
|
|
Create from YAML string. |
220
|
|
|
""" |
221
|
|
|
settings = yaml.safe_load(config_str) |
222
|
|
|
return AsgardpyConfig(**settings) |
223
|
|
|
|
224
|
|
|
def write(self, path, overwrite=False): |
225
|
|
|
""" |
226
|
|
|
Write to YAML file. |
227
|
|
|
""" |
228
|
|
|
path = make_path(path) |
229
|
|
|
if path.exists() and not overwrite: |
230
|
|
|
raise OSError(f"File exists already: {path}") |
231
|
|
|
path.write_text(self.to_yaml()) |
232
|
|
|
|
233
|
|
|
def to_yaml(self): |
234
|
|
|
""" |
235
|
|
|
Convert to YAML string. |
236
|
|
|
""" |
237
|
|
|
# Here using `dict()` instead of `json()` would be more natural. |
238
|
|
|
# We should change this once pydantic adds support for custom encoders |
239
|
|
|
# to `dict()`. See https://github.com/samuelcolvin/pydantic/issues/1043 |
240
|
|
|
data = json.loads(self.model_dump_json()) |
241
|
|
|
return yaml.dump(data, sort_keys=False, indent=4, width=80, default_flow_style=None) |
242
|
|
|
|
243
|
|
|
def set_logging(self): |
244
|
|
|
""" |
245
|
|
|
Set logging config. |
246
|
|
|
Calls ``logging.basicConfig``, i.e. adjusts global logging state. |
247
|
|
|
""" |
248
|
|
|
self.general.log.level = self.general.log.level.upper() |
249
|
|
|
logging.basicConfig(**self.general.log.model_dump()) |
250
|
|
|
log.info("Setting logging config: %s", self.general.log.model_dump()) |
251
|
|
|
|
252
|
|
|
def update(self, config=None, merge_recursive=False): |
253
|
|
|
""" |
254
|
|
|
Update config with provided settings. |
255
|
|
|
Parameters |
256
|
|
|
---------- |
257
|
|
|
config : string dict or `AsgardpyConfig` object |
258
|
|
|
The other configuration settings provided in dict() syntax. |
259
|
|
|
merge_recursive : bool |
260
|
|
|
Perform a recursive merge from the other config onto the parent config. |
261
|
|
|
|
262
|
|
|
Returns |
263
|
|
|
------- |
264
|
|
|
config : `AsgardpyConfig` object |
265
|
|
|
Updated config object. |
266
|
|
|
""" |
267
|
|
|
other = check_config(config) |
268
|
|
|
|
269
|
|
|
# Special case of when only updating target model parameters from a |
270
|
|
|
# separate file, where the name of the source is not provided. |
271
|
|
|
if other.target.components[0].name == "": |
272
|
|
|
merge_recursive = True |
273
|
|
|
|
274
|
|
|
if merge_recursive: |
275
|
|
|
config_new = recursive_merge_dicts( |
276
|
|
|
self.model_dump(exclude_defaults=True), other.model_dump(exclude_defaults=True) |
277
|
|
|
) |
278
|
|
|
else: |
279
|
|
|
config_new = deep_update( |
280
|
|
|
self.model_dump(exclude_defaults=True), other.model_dump(exclude_defaults=True) |
281
|
|
|
) |
282
|
|
|
return AsgardpyConfig(**config_new) |
283
|
|
|
|