1
|
|
|
import argparse |
2
|
|
|
import logging |
3
|
|
|
from pathlib import Path |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
from asgardpy.analysis import AsgardpyAnalysis |
8
|
|
|
from asgardpy.config import AsgardpyConfig, write_asgardpy_model_to_file |
9
|
|
|
from asgardpy.stats import ( |
10
|
|
|
check_model_preference_aic, |
11
|
|
|
copy_target_config, |
12
|
|
|
fetch_all_analysis_fit_info, |
13
|
|
|
get_model_config_files, |
14
|
|
|
tabulate_best_fit_stats, |
15
|
|
|
) |
16
|
|
|
|
17
|
|
|
log = logging.getLogger(__name__) |
18
|
|
|
|
19
|
|
|
parser = argparse.ArgumentParser(description="Get preferred best-fit spectral model") |
20
|
|
|
|
21
|
|
|
parser.add_argument( |
22
|
|
|
"--config", |
23
|
|
|
"-c", |
24
|
|
|
help="Path to the config file", |
25
|
|
|
) |
26
|
|
|
|
27
|
|
|
parser.add_argument("--ebl-scale-factor", "-e", help="Value of EBL Norm Scale Factor", default=1.0, type=float) |
28
|
|
|
|
29
|
|
|
parser.add_argument( |
30
|
|
|
"--ebl-model-name", |
31
|
|
|
"-m", |
32
|
|
|
help="Name of EBL model as used by Gammapy", |
33
|
|
|
default="dominguez", |
34
|
|
|
type=str, |
35
|
|
|
) |
36
|
|
|
|
37
|
|
|
parser.add_argument( |
38
|
|
|
"--write-config", |
39
|
|
|
help="Boolean to write the best-fit model into a separate file.", |
40
|
|
|
default=True, |
41
|
|
|
type=bool, |
42
|
|
|
) |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
def fetch_all_analysis_objects(main_config, spec_model_temp_files, ebl_scale_factor, ebl_model_name): |
46
|
|
|
"""For a list of spectral models, initiate AsgardpyAnalysis objects.""" |
47
|
|
|
main_analysis_list = {} |
48
|
|
|
spec_models_list = [] |
49
|
|
|
|
50
|
|
|
for temp in spec_model_temp_files: |
51
|
|
|
temp_model = AsgardpyAnalysis(main_config) |
52
|
|
|
temp_model.config.target.models_file = temp |
53
|
|
|
|
54
|
|
|
temp_model_2 = AsgardpyAnalysis(temp_model.config) |
55
|
|
|
|
56
|
|
|
copy_target_config(temp_model, temp_model_2) |
57
|
|
|
|
58
|
|
|
if ebl_scale_factor != 1.0: |
59
|
|
|
temp_model_2.config.target.components[0].spectral.ebl_abs.alpha_norm = ebl_scale_factor |
60
|
|
|
|
61
|
|
|
if ebl_model_name != "dominguez": |
62
|
|
|
temp_model_2.config.target.components[0].spectral.ebl_abs.reference = ebl_model_name.replace("_", "-") |
63
|
|
|
else: |
64
|
|
|
temp_model_2.config.target.components[ |
65
|
|
|
0 |
66
|
|
|
].spectral.ebl_abs.reference = temp_model.config.target.components[0].spectral.ebl_abs.reference |
67
|
|
|
|
68
|
|
|
spec_tag = temp.name.split(".")[0].split("_")[-1] |
69
|
|
|
spec_models_list.append(spec_tag) |
70
|
|
|
main_analysis_list[spec_tag] = {} |
71
|
|
|
|
72
|
|
|
main_analysis_list[spec_tag]["Analysis"] = temp_model_2 |
73
|
|
|
|
74
|
|
|
spec_models_list = np.array(spec_models_list) |
75
|
|
|
|
76
|
|
|
return main_analysis_list, spec_models_list |
77
|
|
|
|
78
|
|
|
|
79
|
|
|
def get_best_preferred_model_lrt(best_sp_idx_lrt, pref_over_pl_chi2_list, spec_models_list, PL_idx, log): |
80
|
|
|
""" |
81
|
|
|
From a list of a given spectral model's preference over PL model as per LRT, |
82
|
|
|
get the index of the best spectral model and write appropriate logs. |
83
|
|
|
""" |
84
|
|
|
for idx in best_sp_idx_lrt: |
85
|
|
|
if pref_over_pl_chi2_list[idx] > 5: |
86
|
|
|
sp_idx_lrt = idx |
87
|
|
|
log.info("Best preferred spectral model over PL is %s", spec_models_list[idx]) |
88
|
|
|
else: |
89
|
|
|
sp_idx_lrt = PL_idx |
90
|
|
|
log.info("No other model preferred over PL") |
91
|
|
|
return sp_idx_lrt, log |
92
|
|
|
|
93
|
|
|
|
94
|
|
|
def get_best_preferred_model_aic(best_sp_idx_aic, list_rel_p, spec_models_list, fit_success_list, PL_idx, log): |
95
|
|
|
""" |
96
|
|
|
From a list of a given spectral model's relative p-value from a list of |
97
|
|
|
spectral models, as per AIC, get the index of the best spectral model and |
98
|
|
|
write appropriate logs. |
99
|
|
|
""" |
100
|
|
|
for idx in best_sp_idx_aic: |
101
|
|
|
if list_rel_p[idx] > 0.95: |
102
|
|
|
sp_idx_aic = idx |
103
|
|
|
log.info("Best preferred spectral model is %s", spec_models_list[fit_success_list][idx]) |
104
|
|
|
else: |
105
|
|
|
sp_idx_aic = PL_idx |
106
|
|
|
log.info("No other model preferred, hence PL is selected") |
107
|
|
|
|
108
|
|
|
return sp_idx_aic, log |
109
|
|
|
|
110
|
|
|
|
111
|
|
|
def main(): |
112
|
|
|
args = parser.parse_args() |
113
|
|
|
|
114
|
|
|
main_config = AsgardpyConfig.read(args.config) |
115
|
|
|
config_path = Path(args.config) |
116
|
|
|
config_path_file_name = config_path.name.split(".")[0] |
117
|
|
|
target_source_name = main_config.target.source_name |
118
|
|
|
|
119
|
|
|
steps_list = [] |
120
|
|
|
for s in main_config.general.steps: |
121
|
|
|
if s != "flux-points": |
122
|
|
|
steps_list.append(s) |
123
|
|
|
log.info("Target source is: %s", target_source_name) |
124
|
|
|
|
125
|
|
|
spec_model_temp_files = get_model_config_files(["lp", "bpl", "ecpl", "pl", "eclp", "sbpl"]) |
126
|
|
|
|
127
|
|
|
main_analysis_list, spec_models_list = fetch_all_analysis_objects( |
128
|
|
|
main_config, spec_model_temp_files, args.ebl_scale_factor, args.ebl_model_name |
129
|
|
|
) |
130
|
|
|
|
131
|
|
|
# Run Analysis Steps till Fit |
132
|
|
|
PL_idx = 0 |
133
|
|
|
|
134
|
|
|
for i, tag in enumerate(spec_models_list): |
135
|
|
|
log.info("Spectral model being tested: %s", tag) |
136
|
|
|
|
137
|
|
|
main_analysis_list[tag]["Analysis"].run(steps_list) |
138
|
|
|
|
139
|
|
|
if tag == "pl": |
140
|
|
|
PL_idx = i |
141
|
|
|
|
142
|
|
|
fit_success_list, stat_list, dof_list, pref_over_pl_chi2_list = fetch_all_analysis_fit_info( |
143
|
|
|
main_analysis_list, spec_models_list |
144
|
|
|
) |
145
|
|
|
|
146
|
|
|
# If any spectral model has at least 5 sigmas preference over PL |
147
|
|
|
best_sp_idx_lrt = np.nonzero(pref_over_pl_chi2_list == np.nanmax(pref_over_pl_chi2_list))[0] |
148
|
|
|
sp_idx_lrt, log = get_best_preferred_model_lrt( |
149
|
|
|
best_sp_idx_lrt, |
150
|
|
|
pref_over_pl_chi2_list, |
151
|
|
|
spec_models_list, |
152
|
|
|
PL_idx, |
153
|
|
|
log, |
154
|
|
|
) |
155
|
|
|
|
156
|
|
|
list_rel_p = check_model_preference_aic(stat_list, dof_list) |
157
|
|
|
|
158
|
|
|
best_sp_idx_aic = np.nonzero(list_rel_p == np.nanmax(list_rel_p))[0] |
159
|
|
|
|
160
|
|
|
sp_idx_aic, log = get_best_preferred_model_aic( |
161
|
|
|
best_sp_idx_aic, |
162
|
|
|
list_rel_p, |
163
|
|
|
spec_models_list, |
164
|
|
|
fit_success_list, |
165
|
|
|
PL_idx, |
166
|
|
|
log, |
167
|
|
|
) |
168
|
|
|
|
169
|
|
|
stats_table = tabulate_best_fit_stats(spec_models_list, fit_success_list, main_analysis_list, list_rel_p) |
170
|
|
|
|
171
|
|
|
stats_table.meta["Target source name"] = target_source_name |
172
|
|
|
stats_table.meta["EBL model"] = args.ebl_model_name |
173
|
|
|
stats_table.meta["EBL scale factor"] = args.ebl_scale_factor |
174
|
|
|
|
175
|
|
|
file_name = f"{config_path_file_name}_{args.ebl_model_name}_{args.ebl_scale_factor}_fit_stats.ecsv" |
176
|
|
|
stats_table.write( |
177
|
|
|
main_config.general.outdir / file_name, |
178
|
|
|
format="ascii.ecsv", |
179
|
|
|
overwrite=True, |
180
|
|
|
) |
181
|
|
|
|
182
|
|
|
if args.write_config: |
183
|
|
|
log.info("Write the spectral model") |
184
|
|
|
|
185
|
|
|
for idx, name in zip([sp_idx_lrt, sp_idx_aic], ["lrt", "aic"], strict=False): |
186
|
|
|
tag = spec_models_list[fit_success_list][idx] |
187
|
|
|
|
188
|
|
|
path = config_path.parent / f"{config_path_file_name}_model_most_pref_{name}.yaml" |
189
|
|
|
|
190
|
|
|
write_asgardpy_model_to_file( |
191
|
|
|
gammapy_model=main_analysis_list[tag]["Analysis"].final_model[0], output_file=path |
192
|
|
|
) |
193
|
|
|
|
194
|
|
|
|
195
|
|
|
if __name__ == "__main__": |
196
|
|
|
main() |
197
|
|
|
|