1
|
|
|
""" |
2
|
|
|
Module containing additional utility functions for selecting a preferred model. |
3
|
|
|
""" |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
from astropy.table import QTable |
7
|
|
|
|
8
|
|
|
from asgardpy.config.operations import all_model_templates |
9
|
|
|
from asgardpy.stats.stats import check_model_preference_lrt |
10
|
|
|
|
11
|
|
|
__all__ = [ |
12
|
|
|
"fetch_all_analysis_fit_info", |
13
|
|
|
"get_model_config_files", |
14
|
|
|
"tabulate_best_fit_stats", |
15
|
|
|
"copy_target_config", |
16
|
|
|
] |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
def get_model_config_files(select_model_tags): |
20
|
|
|
"""From the default model templates, select some.""" |
21
|
|
|
|
22
|
|
|
all_tags, template_files = all_model_templates() |
23
|
|
|
|
24
|
|
|
spec_model_temp_files = [] |
25
|
|
|
for tag in select_model_tags: |
26
|
|
|
spec_model_temp_files.append(template_files[np.where(all_tags == tag)[0][0]]) |
27
|
|
|
|
28
|
|
|
spec_model_temp_files = np.array(spec_model_temp_files) |
29
|
|
|
|
30
|
|
|
return spec_model_temp_files |
31
|
|
|
|
32
|
|
|
|
33
|
|
|
def get_spec_params_indices(aa_config): |
34
|
|
|
""" |
35
|
|
|
For copying the spectral flux amplitude and flux normalization energy, |
36
|
|
|
from one config to another, find the correct parameter indices within a |
37
|
|
|
given config. |
38
|
|
|
""" |
39
|
|
|
par_names = [] |
40
|
|
|
for p in aa_config.config.target.components[0].spectral.parameters: |
41
|
|
|
par_names.append(p.name) |
42
|
|
|
par_names = np.array(par_names) |
43
|
|
|
|
44
|
|
|
amp_idx = None |
45
|
|
|
# For models without this parameter, name has not yet been included or |
46
|
|
|
# checked with Asgardpy |
47
|
|
|
if "amplitude" in par_names: |
48
|
|
|
amp_idx = np.where(par_names == "amplitude")[0][0] |
49
|
|
|
|
50
|
|
|
if "reference" in par_names: |
51
|
|
|
eref_idx = np.where(par_names == "reference")[0][0] |
52
|
|
|
else: |
53
|
|
|
eref_idx = np.where(par_names == "ebreak")[0][0] |
54
|
|
|
|
55
|
|
|
return amp_idx, eref_idx |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
def copy_target_config(aa_config_1, aa_config_2): |
59
|
|
|
"""From aa_config_1 update information in aa_config_2.""" |
60
|
|
|
|
61
|
|
|
amp_idx_1, eref_idx_1 = get_spec_params_indices(aa_config_1) |
62
|
|
|
amp_idx_2, eref_idx_2 = get_spec_params_indices(aa_config_2) |
63
|
|
|
|
64
|
|
|
# Have the same value of amplitude |
65
|
|
|
aa_config_2.config.target.components[0].spectral.parameters[amp_idx_2].value = ( |
66
|
|
|
aa_config_1.config.target.components[0].spectral.parameters[amp_idx_1].value |
67
|
|
|
) |
68
|
|
|
# Have the same value of reference/e_break energy |
69
|
|
|
aa_config_2.config.target.components[0].spectral.parameters[eref_idx_2].value = ( |
70
|
|
|
aa_config_1.config.target.components[0].spectral.parameters[eref_idx_1].value |
71
|
|
|
) |
72
|
|
|
# Have the same value of redshift value and EBL reference model |
73
|
|
|
aa_config_2.config.target.components[0].spectral.ebl_abs.redshift = aa_config_1.config.target.components[ |
74
|
|
|
0 |
75
|
|
|
].spectral.ebl_abs.redshift |
76
|
|
|
|
77
|
|
|
# Make sure the source names are the same |
78
|
|
|
aa_config_2.config.target.source_name = aa_config_1.config.target.source_name |
79
|
|
|
aa_config_2.config.target.components[0].name = aa_config_1.config.target.components[0].name |
80
|
|
|
|
81
|
|
|
return aa_config_2 |
82
|
|
|
|
83
|
|
|
|
84
|
|
|
def fetch_all_analysis_fit_info(main_analysis_list, spec_models_list): |
85
|
|
|
""" |
86
|
|
|
For a list of spectral models, with the AsgardpyAnalysis run till the fit |
87
|
|
|
step, get the relevant information for testing the model preference. |
88
|
|
|
""" |
89
|
|
|
fit_success_list = [] |
90
|
|
|
pref_over_pl_chi2_list = [] |
91
|
|
|
stat_list = [] |
92
|
|
|
dof_list = [] |
93
|
|
|
|
94
|
|
|
for tag in spec_models_list: |
95
|
|
|
dict_tag = main_analysis_list[tag]["Analysis"].instrument_spectral_info |
96
|
|
|
dict_pl = main_analysis_list["pl"]["Analysis"].instrument_spectral_info |
97
|
|
|
|
98
|
|
|
# Collect parameters for AIC check |
99
|
|
|
stat = dict_tag["best_fit_stat"] |
100
|
|
|
dof = dict_tag["DoF"] |
101
|
|
|
|
102
|
|
|
fit_success = main_analysis_list[tag]["Analysis"].fit_result.success |
103
|
|
|
|
104
|
|
|
fit_success_list.append(fit_success) |
105
|
|
|
stat_list.append(stat) |
106
|
|
|
dof_list.append(dof) |
107
|
|
|
|
108
|
|
|
# Checking the preference of a "nested" spectral model (observed), |
109
|
|
|
# over Power Law. |
110
|
|
|
if tag == "pl": |
111
|
|
|
main_analysis_list[tag]["Pref_over_pl_chi2"] = 0 |
112
|
|
|
main_analysis_list[tag]["Pref_over_pl_pval"] = 0 |
113
|
|
|
main_analysis_list[tag]["DoF_over_pl"] = 0 |
114
|
|
|
pref_over_pl_chi2_list.append(0) |
115
|
|
|
continue |
116
|
|
|
|
117
|
|
|
p_pl_x, g_pl_x, ndof_pl_x = check_model_preference_lrt( |
118
|
|
|
dict_pl["best_fit_stat"], |
119
|
|
|
dict_tag["best_fit_stat"], |
120
|
|
|
dict_pl["DoF"], |
121
|
|
|
dict_tag["DoF"], |
122
|
|
|
) |
123
|
|
|
|
124
|
|
|
main_analysis_list[tag]["Pref_over_pl_chi2"] = g_pl_x |
125
|
|
|
pref_over_pl_chi2_list.append(g_pl_x) |
126
|
|
|
main_analysis_list[tag]["Pref_over_pl_pval"] = p_pl_x |
127
|
|
|
main_analysis_list[tag]["DoF_over_pl"] = ndof_pl_x |
128
|
|
|
|
129
|
|
|
fit_success_list = np.array(fit_success_list) |
130
|
|
|
|
131
|
|
|
# Only select fit results that were successful for comparisons |
132
|
|
|
stat_list = np.array(stat_list)[fit_success_list] |
133
|
|
|
dof_list = np.array(dof_list)[fit_success_list] |
134
|
|
|
pref_over_pl_chi2_list = np.array(pref_over_pl_chi2_list)[fit_success_list] |
135
|
|
|
|
136
|
|
|
return fit_success_list, stat_list, dof_list, pref_over_pl_chi2_list |
137
|
|
|
|
138
|
|
|
|
139
|
|
|
def tabulate_best_fit_stats(spec_models_list, fit_success_list, main_analysis_list, list_rel_p): |
140
|
|
|
"""For a list of spectral models, tabulate the best fit information.""" |
141
|
|
|
|
142
|
|
|
fit_stats_table = [] |
143
|
|
|
|
144
|
|
|
for i, tag in enumerate(spec_models_list[fit_success_list]): |
145
|
|
|
info_ = main_analysis_list[tag]["Analysis"].instrument_spectral_info |
146
|
|
|
|
147
|
|
|
t = main_analysis_list[tag] |
148
|
|
|
|
149
|
|
|
ts_gof = round(info_["best_fit_stat"] - info_["max_fit_stat"], 3) |
150
|
|
|
t_fits = { |
151
|
|
|
"Spectral Model": tag.upper(), |
152
|
|
|
"TS of Best Fit": round(info_["best_fit_stat"], 3), |
153
|
|
|
"TS of Max Fit": round(info_["max_fit_stat"], 3), |
154
|
|
|
"TS of Goodness of Fit": ts_gof, |
155
|
|
|
"DoF of Fit": info_["DoF"], |
156
|
|
|
r"Significance ($\sigma$) of Goodness of Fit": round(info_["fit_chi2_sig"], 3), |
157
|
|
|
"p-value of Goodness of Fit": float(f"{info_['fit_pval']:.4g}"), |
158
|
|
|
"Pref over PL (chi2)": round(t["Pref_over_pl_chi2"], 3), |
159
|
|
|
"Pref over PL (p-value)": float(f"{t['Pref_over_pl_pval']:.4g}"), |
160
|
|
|
"Pref over PL (DoF)": t["DoF_over_pl"], |
161
|
|
|
"Relative p-value (AIC)": float(f"{list_rel_p[i]:.4g}"), |
162
|
|
|
} |
163
|
|
|
fit_stats_table.append(t_fits) |
164
|
|
|
stats_table = QTable(fit_stats_table) |
165
|
|
|
|
166
|
|
|
return stats_table |
167
|
|
|
|