test_preferred_model()   B
last analyzed

Complexity

Conditions 5

Size

Total Lines 59
Code Lines 34

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 5
eloc 34
nop 1
dl 0
loc 59
rs 8.5973
c 0
b 0
f 0

How to fix   Long Method   

Long Method

Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.

For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.

Commonly applied refactorings include:

1
import numpy as np
2
3
from asgardpy.analysis import AsgardpyAnalysis
4
from asgardpy.stats import (
5
    check_model_preference_aic,
6
    check_model_preference_lrt,
7
    copy_target_config,
8
    fetch_all_analysis_fit_info,
9
    get_model_config_files,
10
    tabulate_best_fit_stats,
11
)
12
13
14
def test_preferred_model(base_config_1d):
15
    """
16
    Testing the script code of checking the preferred spectral model.
17
    """
18
    select_model_tags = ["lp", "bpl2", "ecpl", "pl", "eclp"]
19
    spec_model_temp_files = []
20
    spec_model_temp_files = get_model_config_files(select_model_tags)
21
22
    main_analysis_list = {}
23
    spec_models_list = []
24
25
    for temp in spec_model_temp_files:
26
        temp_model = AsgardpyAnalysis(base_config_1d)
27
        temp_model.config.fit_params.fit_range.min = "100 GeV"
28
29
        temp_model.config.target.models_file = temp
30
31
        temp_model_2 = AsgardpyAnalysis(temp_model.config)
32
33
        copy_target_config(temp_model, temp_model_2)
34
35
        spec_tag = temp.name.split(".")[0].split("_")[-1]
36
        spec_models_list.append(spec_tag)
37
        main_analysis_list[spec_tag] = {}
38
39
        main_analysis_list[spec_tag]["Analysis"] = temp_model_2
40
41
    spec_models_list = np.array(spec_models_list)
42
43
    # Run Analysis Steps till Fit
44
    for tag in spec_models_list:
45
        main_analysis_list[tag]["Analysis"].run(["datasets-1d", "fit"])
46
47
    fit_success_list, stat_list, dof_list, pref_over_pl_chi2_list = fetch_all_analysis_fit_info(
48
        main_analysis_list, spec_models_list
49
    )
50
51
    # If any spectral model has at least 5 sigmas preference over PL
52
    best_sp_idx_lrt = np.nonzero(pref_over_pl_chi2_list == np.nanmax(pref_over_pl_chi2_list))[0]
53
    for idx in best_sp_idx_lrt:
54
        if pref_over_pl_chi2_list[idx] > 5:
55
            lrt_best_model = spec_models_list[idx]
56
57
    list_rel_p = check_model_preference_aic(stat_list, dof_list)
58
59
    best_sp_idx_aic = np.nonzero(list_rel_p == np.nanmax(list_rel_p))[0]
60
61
    aic_best_model = select_model_tags[best_sp_idx_aic[0]]
62
63
    stats_table = tabulate_best_fit_stats(spec_models_list, fit_success_list, main_analysis_list, list_rel_p)
64
65
    assert lrt_best_model == "lp"
66
    assert aic_best_model == "lp"
67
    assert len(stats_table.colnames) == 11
68
69
    # Check for bad comparisons, same dof
70
    p_val_0, g_sig_0, dof_0 = check_model_preference_lrt(4.4, 2.2, 2, 2)
71
72
    assert np.isnan(p_val_0)
73