Test Failed
Push — main ( 973aa1...436074 )
by Christian
02:37
created

text.parseNumber   F

Complexity

Conditions 52

Size

Total Lines 133
Code Lines 84

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 52
eloc 84
nop 1
dl 0
loc 133
rs 0
c 0
b 0
f 0

How to fix   Long Method    Complexity   

Long Method

Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.

For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.

Commonly applied refactorings include:

Complexity

Complex classes like text.parseNumber often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

1
// Copyright 2018 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
5
package text
6
7
// parseNumberValue parses a number from the input and returns a Token object.
8
func (d *Decoder) parseNumberValue() (Token, bool) {
9
	in := d.in
10
	num := parseNumber(in)
11
	if num.size == 0 {
12
		return Token{}, false
13
	}
14
	numAttrs := num.kind
15
	if num.neg {
16
		numAttrs |= isNegative
17
	}
18
	strSize := num.size
19
	last := num.size - 1
20
	if num.kind == numFloat && (d.in[last] == 'f' || d.in[last] == 'F') {
21
		strSize = last
22
	}
23
	tok := Token{
24
		kind:     Scalar,
25
		attrs:    numberValue,
26
		pos:      len(d.orig) - len(d.in),
27
		raw:      d.in[:num.size],
28
		str:      string(d.in[:strSize]),
29
		numAttrs: numAttrs,
30
	}
31
	d.consume(num.size)
32
	return tok, true
33
}
34
35
const (
36
	numDec uint8 = (1 << iota) / 2
37
	numHex
38
	numOct
39
	numFloat
40
)
41
42
// number is the result of parsing out a valid number from parseNumber. It
43
// contains data for doing float or integer conversion via the strconv package
44
// in conjunction with the input bytes.
45
type number struct {
46
	kind uint8
47
	neg  bool
48
	size int
49
}
50
51
// parseNumber constructs a number object from given input. It allows for the
52
// following patterns:
53
//   integer: ^-?([1-9][0-9]*|0[xX][0-9a-fA-F]+|0[0-7]*)
54
//   float: ^-?((0|[1-9][0-9]*)?([.][0-9]*)?([eE][+-]?[0-9]+)?[fF]?)
55
// It also returns the number of parsed bytes for the given number, 0 if it is
56
// not a number.
57
func parseNumber(input []byte) number {
58
	kind := numDec
59
	var size int
60
	var neg bool
61
62
	s := input
63
	if len(s) == 0 {
64
		return number{}
65
	}
66
67
	// Optional -
68
	if s[0] == '-' {
69
		neg = true
70
		s = s[1:]
71
		size++
72
		if len(s) == 0 {
73
			return number{}
74
		}
75
	}
76
77
	// C++ allows for whitespace and comments in between the negative sign and
78
	// the rest of the number. This logic currently does not but is consistent
79
	// with v1.
80
81
	switch {
82
	case s[0] == '0':
83
		if len(s) > 1 {
84
			switch {
85
			case s[1] == 'x' || s[1] == 'X':
86
				// Parse as hex number.
87
				kind = numHex
88
				n := 2
89
				s = s[2:]
90
				for len(s) > 0 && (('0' <= s[0] && s[0] <= '9') ||
91
					('a' <= s[0] && s[0] <= 'f') ||
92
					('A' <= s[0] && s[0] <= 'F')) {
93
					s = s[1:]
94
					n++
95
				}
96
				if n == 2 {
97
					return number{}
98
				}
99
				size += n
100
101
			case '0' <= s[1] && s[1] <= '7':
102
				// Parse as octal number.
103
				kind = numOct
104
				n := 2
105
				s = s[2:]
106
				for len(s) > 0 && '0' <= s[0] && s[0] <= '7' {
107
					s = s[1:]
108
					n++
109
				}
110
				size += n
111
			}
112
113
			if kind&(numHex|numOct) > 0 {
114
				if len(s) > 0 && !isDelim(s[0]) {
115
					return number{}
116
				}
117
				return number{kind: kind, neg: neg, size: size}
118
			}
119
		}
120
		s = s[1:]
121
		size++
122
123
	case '1' <= s[0] && s[0] <= '9':
124
		n := 1
125
		s = s[1:]
126
		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
127
			s = s[1:]
128
			n++
129
		}
130
		size += n
131
132
	case s[0] == '.':
133
		// Set kind to numFloat to signify the intent to parse as float. And
134
		// that it needs to have other digits after '.'.
135
		kind = numFloat
136
137
	default:
138
		return number{}
139
	}
140
141
	// . followed by 0 or more digits.
142
	if len(s) > 0 && s[0] == '.' {
143
		n := 1
144
		s = s[1:]
145
		// If decimal point was before any digits, it should be followed by
146
		// other digits.
147
		if len(s) == 0 && kind == numFloat {
148
			return number{}
149
		}
150
		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
151
			s = s[1:]
152
			n++
153
		}
154
		size += n
155
		kind = numFloat
156
	}
157
158
	// e or E followed by an optional - or + and 1 or more digits.
159
	if len(s) >= 2 && (s[0] == 'e' || s[0] == 'E') {
160
		kind = numFloat
161
		s = s[1:]
162
		n := 1
163
		if s[0] == '+' || s[0] == '-' {
164
			s = s[1:]
165
			n++
166
			if len(s) == 0 {
167
				return number{}
168
			}
169
		}
170
		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
171
			s = s[1:]
172
			n++
173
		}
174
		size += n
175
	}
176
177
	// Optional suffix f or F for floats.
178
	if len(s) > 0 && (s[0] == 'f' || s[0] == 'F') {
179
		kind = numFloat
180
		s = s[1:]
181
		size++
182
	}
183
184
	// Check that next byte is a delimiter or it is at the end.
185
	if len(s) > 0 && !isDelim(s[0]) {
186
		return number{}
187
	}
188
189
	return number{kind: kind, neg: neg, size: size}
190
}
191