1
|
|
|
import diff_classifier.features as ft |
2
|
|
|
import diff_classifier.msd as msd |
3
|
|
|
import numpy.testing as npt |
4
|
|
|
import pandas.util.testing as pdt |
5
|
|
|
import numpy as np |
6
|
|
|
import pandas as pd |
7
|
|
|
import math |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
def test_make_xyarray(): |
11
|
|
|
d = {'Frame': [0, 1, 2, 3, 4, 0, 1, 2, 3, 4], |
12
|
|
|
'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], |
13
|
|
|
'X': [np.nan, 6, 7, 8, 9, 1, 2, 3, 4, np.nan], |
14
|
|
|
'Y': [np.nan, 7, 8, 9, 10, 2, 3, 4, 5, np.nan]} |
15
|
|
|
df = pd.DataFrame(data=d) |
16
|
|
|
cols = ['Frame', 'Track_ID', 'X', 'Y', 'MSDs', 'Gauss'] |
17
|
|
|
length = max(df['Frame']) + 1 |
18
|
|
|
m_df = msd.all_msds2(df, frames=length)[cols] |
19
|
|
|
|
20
|
|
|
dt = {'Frame': [float(i) for i in[0, 1, 2, 3]], |
21
|
|
|
'Track_ID': [float(i) for i in[2, 2, 2, 2]], |
22
|
|
|
'X': [float(i) for i in[1, 2, 3, 4]], |
23
|
|
|
'Y': [float(i) for i in[2, 3, 4, 5]], |
24
|
|
|
'MSDs': [float(i) for i in[0, 2, 8, 18]], |
25
|
|
|
'Gauss': [float(i) for i in[0, 0.25, 0.25, 0.25]]} |
26
|
|
|
dft = pd.DataFrame(data=dt) |
27
|
|
|
|
28
|
|
|
pdt.assert_frame_equal(ft.unmask_track(m_df[m_df['Track_ID']==2]), dft) |
29
|
|
|
|
30
|
|
View Code Duplication |
def test_alpha_calc(): |
|
|
|
|
31
|
|
|
frames = 5 |
32
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
33
|
|
|
'X': np.linspace(0, frames, frames)+5, |
34
|
|
|
'Y': np.linspace(0, frames, frames)+3, |
35
|
|
|
'Track_ID': np.ones(frames)} |
36
|
|
|
df = pd.DataFrame(data=d) |
37
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
38
|
|
|
assert ft.alpha_calc(df) == (2.0000000000000004, 0.4999999999999998) |
39
|
|
|
|
40
|
|
|
frames = 10 |
41
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
42
|
|
|
'X': np.sin(np.linspace(0, frames, frames)+5), |
43
|
|
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
44
|
|
|
'Track_ID': np.ones(frames)} |
45
|
|
|
df = pd.DataFrame(data=d) |
46
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
47
|
|
|
assert ft.alpha_calc(df) == (0.8201034110620524, 0.1494342948594476) |
48
|
|
|
|
49
|
|
|
|
50
|
|
|
def test_gyration_tensor(): |
51
|
|
|
frames = 6 |
52
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
53
|
|
|
'X': np.linspace(0, frames, frames)+5, |
54
|
|
|
'Y': np.linspace(0, frames, frames)+3, |
55
|
|
|
'Track_ID': np.ones(frames)} |
56
|
|
|
df = pd.DataFrame(data=d) |
57
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
58
|
|
|
o1, o2, o3, o4 = (8.0, 0.0, np.array([ 0.70710678, -0.70710678]), np.array([0.70710678, 0.70710678])) |
59
|
|
|
d1, d2, d3, d4 = ft.gyration_tensor(df) |
60
|
|
|
|
61
|
|
|
assert d1 == o1 |
62
|
|
|
assert d2 == o2 |
63
|
|
|
npt.assert_almost_equal(o3, d3) |
64
|
|
|
npt.assert_almost_equal(o4, d4) |
65
|
|
|
|
66
|
|
|
frames = 10 |
67
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
68
|
|
|
'X': np.sin(np.linspace(0, frames, frames)+5), |
69
|
|
|
'Y': np.cos(np.linspace(0, frames, frames)+5), |
70
|
|
|
'Track_ID': np.ones(frames)} |
71
|
|
|
df = pd.DataFrame(data=d) |
72
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
73
|
|
|
o1, o2, o3, o4 = (0.47248734315843355, 0.3447097846562249, np.array([0.83907153, 0.54402111]), |
74
|
|
|
np.array([-0.54402111, 0.83907153])) |
75
|
|
|
d1, d2, d3, d4 = ft.gyration_tensor(df) |
76
|
|
|
|
77
|
|
|
assert d1 == o1 |
78
|
|
|
assert d2 == o2 |
79
|
|
|
npt.assert_almost_equal(o3, d3) |
80
|
|
|
npt.assert_almost_equal(o4, d4) |
81
|
|
|
|
82
|
|
|
|
83
|
|
View Code Duplication |
def test_kurtosis(): |
|
|
|
|
84
|
|
|
frames = 5 |
85
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
86
|
|
|
'X': np.linspace(0, frames, frames)+5, |
87
|
|
|
'Y': np.linspace(0, frames, frames)+3, |
88
|
|
|
'Track_ID': np.ones(frames)} |
89
|
|
|
df = pd.DataFrame(data=d) |
90
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
91
|
|
|
assert ft.kurtosis(df) == 4.079999999999999 |
92
|
|
|
|
93
|
|
|
frames = 10 |
94
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
95
|
|
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
96
|
|
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
97
|
|
|
'Track_ID': np.ones(frames)} |
98
|
|
|
df = pd.DataFrame(data=d) |
99
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
100
|
|
|
assert ft.kurtosis(df) == 1.4759027695843443 |
101
|
|
|
|
102
|
|
|
|
103
|
|
|
def test_asymmetry(): |
104
|
|
|
frames = 10 |
105
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
106
|
|
|
'X': np.linspace(0, frames, frames)+5, |
107
|
|
|
'Y': np.linspace(0, frames, frames)+3, |
108
|
|
|
'Track_ID': np.ones(frames)} |
109
|
|
|
df = pd.DataFrame(data=d) |
110
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
111
|
|
|
|
112
|
|
|
o1, o2, o3, o4, o5 = (20.0, 0.0, 1.0, 0.0, 0.69314718) |
113
|
|
|
d1, d2, d3, d4, d5 = ft.asymmetry(df) |
114
|
|
|
assert math.isclose(o1, d1, abs_tol=1e-10) |
115
|
|
|
assert math.isclose(o2, d2, abs_tol=1e-10) |
116
|
|
|
assert math.isclose(o3, d3, abs_tol=1e-10) |
117
|
|
|
assert math.isclose(o4, d4, abs_tol=1e-10) |
118
|
|
|
assert math.isclose(o5, d5, abs_tol=1e-10) |
119
|
|
|
|
120
|
|
|
frames = 100 |
121
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
122
|
|
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
123
|
|
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
124
|
|
|
'Track_ID': np.ones(frames)} |
125
|
|
|
df = pd.DataFrame(data=d) |
126
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
127
|
|
|
|
128
|
|
|
o1, o2, o3, o4, o5 = (0.4254120816156, 0.42004967815488, 0.0001609000151811, 0.9873948021401, 2.0114322402896e-05) |
129
|
|
|
d1, d2, d3, d4, d5 = ft.asymmetry(df) |
130
|
|
|
assert math.isclose(o1, d1) |
131
|
|
|
assert math.isclose(o2, d2) |
132
|
|
|
assert math.isclose(o3, d3) |
133
|
|
|
assert math.isclose(o4, d4) |
134
|
|
|
assert math.isclose(o5, d5) |
135
|
|
|
|
136
|
|
|
|
137
|
|
|
def test_minBoundingRect(): |
138
|
|
|
frames = 10 |
139
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
140
|
|
|
'X': np.linspace(0, frames, frames)+5, |
141
|
|
|
'Y': np.linspace(0, frames, frames)+3, |
142
|
|
|
'Track_ID': np.ones(frames)} |
143
|
|
|
df = pd.DataFrame(data=d) |
144
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
145
|
|
|
|
146
|
|
|
d1, d2, d3, d4, d5, d6 = ft.minBoundingRect(df) |
147
|
|
|
o1, o2, o3, o4 = (-2.356194490192, 0, 14.142135623730, 0) |
148
|
|
|
o5 = np.array([10, 8]) |
149
|
|
|
o6 = np.array([[5., 3.], [15., 13.], [15., 13.], [5., 3.]]) |
150
|
|
|
|
151
|
|
|
#assert math.isclose(d1, o1, abs_tol=1e-10) |
152
|
|
|
assert math.isclose(d2, o2, abs_tol=1e-10) |
153
|
|
|
assert math.isclose(d3, o3, abs_tol=1e-10) |
154
|
|
|
assert math.isclose(d4, o4, abs_tol=1e-10) |
155
|
|
|
npt.assert_almost_equal(d5, o5) |
156
|
|
|
#npt.assert_almost_equal(d6, o6) |
157
|
|
|
|
158
|
|
|
frames = 100 |
159
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
160
|
|
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
161
|
|
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
162
|
|
|
'Track_ID': np.ones(frames)} |
163
|
|
|
df = pd.DataFrame(data=d) |
164
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
165
|
|
|
|
166
|
|
|
d1, d2, d3, d4, d5, d6 = ft.minBoundingRect(df) |
167
|
|
|
o1, o2, o3, o4 = (-2.7345175425633, 3.7067697307443, 1.899593160348, 1.951349272106) |
168
|
|
|
o5 = np.array([-0.00098312, 0.00228019]) |
169
|
|
|
o6 = np.array([[-1.2594591, 0.52217706], |
170
|
|
|
[0.4849046, 1.27427376], |
171
|
|
|
[1.25749286, -0.51761668], |
172
|
|
|
[-0.48687084, -1.26971339]]) |
173
|
|
|
|
174
|
|
|
#assert math.isclose(d1, o1, abs_tol=1e-10) |
175
|
|
|
assert math.isclose(d2, o2, abs_tol=1e-10) |
176
|
|
|
assert math.isclose(d3, o3, abs_tol=1e-10) |
177
|
|
|
assert math.isclose(d4, o4, abs_tol=1e-10) |
178
|
|
|
npt.assert_almost_equal(d5, o5) |
179
|
|
|
#npt.assert_almost_equal(d6, o6) |
180
|
|
|
|
181
|
|
|
def test_aspectratio(): |
182
|
|
|
frames = 6 |
183
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
184
|
|
|
'X': [0, 1, 1, 2, 2, 3], |
185
|
|
|
'Y': [0, 0, 1, 1, 2, 2], |
186
|
|
|
'Track_ID': np.ones(frames)} |
187
|
|
|
df = pd.DataFrame(data=d) |
188
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
189
|
|
|
assert ft.aspectratio(df)[0:2] == (3.9000000000000026, 0.7435897435897438) |
190
|
|
|
npt.assert_almost_equal(ft.aspectratio(df)[2], np.array([1.5, 1. ])) |
191
|
|
|
|
192
|
|
|
|
193
|
|
View Code Duplication |
def test_boundedness(): |
|
|
|
|
194
|
|
|
frames = 100 |
195
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
196
|
|
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
197
|
|
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
198
|
|
|
'Track_ID': np.ones(frames)} |
199
|
|
|
df = pd.DataFrame(data=d) |
200
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
201
|
|
|
assert ft.boundedness(df) == (0.607673328076712, 5.674370543833708, -0.0535555587618044) |
202
|
|
|
|
203
|
|
|
frames = 10 |
204
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
205
|
|
|
'X': np.linspace(0, frames, frames)+5, |
206
|
|
|
'Y': np.linspace(0, frames, frames)+3, |
207
|
|
|
'Track_ID': np.ones(frames)} |
208
|
|
|
df = pd.DataFrame(data=d) |
209
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
210
|
|
|
assert ft.boundedness(df) == (0.039999999999999994, 1.0, -0.21501108474766228) |
211
|
|
|
|
212
|
|
|
|
213
|
|
View Code Duplication |
def test_efficiency(): |
|
|
|
|
214
|
|
|
frames = 100 |
215
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
216
|
|
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
217
|
|
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
218
|
|
|
'Track_ID': np.ones(frames)} |
219
|
|
|
df = pd.DataFrame(data=d) |
220
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
221
|
|
|
|
222
|
|
|
assert ft.efficiency(df) == (0.003548421265914009, 0.0059620286331768385) |
223
|
|
|
|
224
|
|
|
frames = 10 |
225
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
226
|
|
|
'X': np.linspace(0, frames, frames)+5, |
227
|
|
|
'Y': np.linspace(0, frames, frames)+3, |
228
|
|
|
'Track_ID': np.ones(frames)} |
229
|
|
|
df = pd.DataFrame(data=d) |
230
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
231
|
|
|
|
232
|
|
|
assert ft.efficiency(df) == (10.0, 1.0) |
233
|
|
|
|
234
|
|
|
def test_msd_ratio(): |
235
|
|
|
frames = 10 |
236
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
237
|
|
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
238
|
|
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
239
|
|
|
'Track_ID': np.ones(frames)} |
240
|
|
|
df = pd.DataFrame(data=d) |
241
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
242
|
|
|
|
243
|
|
|
assert ft.msd_ratio(df, 1, 9) == 0.09708430006771959 |
244
|
|
|
|
245
|
|
|
frames = 10 |
246
|
|
|
d = {'Frame': np.linspace(0, frames, frames), |
247
|
|
|
'X': np.linspace(0, frames, frames)+5, |
248
|
|
|
'Y': np.linspace(0, frames, frames)+3, |
249
|
|
|
'Track_ID': np.ones(frames)} |
250
|
|
|
df = pd.DataFrame(data=d) |
251
|
|
|
df = msd.all_msds2(df, frames=frames+1) |
252
|
|
|
|
253
|
|
|
assert ft.msd_ratio(df, 1, 9) == -0.09876543209876543 |
254
|
|
|
|
255
|
|
|
# def test_calculate_features(): |
256
|
|
|
# d = {'Frame': [0, 1, 2, 3, 4, 0, 1, 2, 3, 4], |
257
|
|
|
# 'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], |
258
|
|
|
# 'X': [0, 0, 1, 1, 2, 1, 1, 2, 2, 3], |
259
|
|
|
# 'Y': [0, 1, 1, 2, 2, 0, 1, 1, 2, 2]} |
260
|
|
|
# df = pd.DataFrame(data=d) |
261
|
|
|
# dfi = msd.all_msds2(df, frames = 5) |
262
|
|
|
# feat = ft.calculate_features(dfi) |
263
|
|
|
|
264
|
|
|
# d = {'AR': np.ones(2)*3.9999999999999996, |
265
|
|
|
# 'D_fit': np.ones(2)*0.1705189932550273, |
266
|
|
|
# 'MSD_ratio': np.ones(2)*-0.2666666666666666, |
267
|
|
|
# 'X': [0.75, 1.75], |
268
|
|
|
# 'Y': [1.25, 1.25], |
269
|
|
|
# 'Track_ID': [1.0, 2.0], |
270
|
|
|
# 'alpha': np.ones(2)*1.7793370720777268, |
271
|
|
|
# 'asymmetry1': np.ones(2)*0.9440237239896903, |
272
|
|
|
# 'asymmetry2': np.ones(2)*0.12, |
273
|
|
|
# 'asymmetry3': np.ones(2)*0.3691430189107616, |
274
|
|
|
# 'boundedness': np.ones(2)*0.25, |
275
|
|
|
# 'efficiency': np.ones(2)*2.0, |
276
|
|
|
# 'elongation': np.ones(2)*0.75, |
277
|
|
|
# 'fractal_dim': np.ones(2)*1.333333333333333, |
278
|
|
|
# 'frames': [5.0, 5.0], |
279
|
|
|
# 'kurtosis': np.ones(2)*1.166666666666667, |
280
|
|
|
# 'straightness': np.ones(2)*0.7071067811865476, |
281
|
|
|
# 'trappedness': np.ones(2)*-0.15258529289428524} |
282
|
|
|
# dfi = pd.DataFrame(data=d) |
283
|
|
|
|
284
|
|
|
# pdt.assert_frame_equal(dfi, feat) |
285
|
|
|
|
286
|
|
|
def test_unmask_track(): |
287
|
|
|
size = 10 |
288
|
|
|
ID = np.ones(size) |
289
|
|
|
frame = np.linspace(5, size-1+5, size) |
290
|
|
|
x = frame + 1 |
291
|
|
|
y = frame + 3 |
292
|
|
|
|
293
|
|
|
d = {'Frame': frame, |
294
|
|
|
'Track_ID': ID, |
295
|
|
|
'X': x, |
296
|
|
|
'Y': y} |
297
|
|
|
di = pd.DataFrame(data=d) |
298
|
|
|
track = msd.all_msds2(di, frames=20) |
299
|
|
|
output = ft.unmask_track(track) |
300
|
|
|
|
301
|
|
|
d2 = {'Frame': frame-5, |
302
|
|
|
'Track_ID': ID, |
303
|
|
|
'X': x, |
304
|
|
|
'Y': y, |
305
|
|
|
'MSDs': np.array((0, 2, 8, 18, 32, 50, 72, 98, 128, 162)).astype('float64'), |
306
|
|
|
'Gauss': np.array((0, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25))} |
307
|
|
|
check = pd.DataFrame(data=d2) |
308
|
|
|
|
309
|
|
|
pdt.assert_frame_equal(output, check) |