| Total Complexity | 0 |
| Total Lines | 29 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | #!/usr/bin/env python |
||
| 2 | |||
| 3 | import sys |
||
| 4 | import diff_classifier.knotlets as kn |
||
| 5 | |||
| 6 | to_track = [] |
||
| 7 | result_futures = {} |
||
| 8 | |||
| 9 | remote_folder = '1_7_19_P01_region_dependent_MPT' #Folder in AWS S3 containing files to be analyzed |
||
| 10 | bucket = 'mckenna.data' |
||
| 11 | vids = 5 |
||
| 12 | inflams = ['PAM'] |
||
| 13 | hemis = ['contra', 'ipsi'] |
||
| 14 | regions = ['cc', 'cortex'] |
||
| 15 | |||
| 16 | for inflam in inflams: |
||
| 17 | for hemi in hemis: |
||
| 18 | for region in regions: |
||
| 19 | for num in range(1, vids+1): |
||
|
|
|||
| 20 | #to_track.append('100x_0_4_1_2_gel_{}_bulk_vid_{}'.format(vis, num)) |
||
| 21 | to_track.append('{}_{}_{}_vid_{}'.format(inflam, hemi, region, '%01d' % num)) |
||
| 22 | |||
| 23 | #to_track = [ '100x_0_4_0_6_gel_0_6_bulk_vid_5', |
||
| 24 | # '100x_0_4_1_2_gel_0_4_bulk_vid_3'] |
||
| 25 | |||
| 26 | for prefix in to_track[int(sys.argv[1]):int(sys.argv[2])]: |
||
| 27 | kn.split(prefix, remote_folder, bucket=bucket) |
||
| 28 | print('Successfully output subimages for {}'.format(prefix)) |
||
| 29 | |||
| 31 |