1
|
|
|
"""Functions to calculate trajectory features from input trajectory data |
2
|
|
|
|
3
|
|
|
This module provides functions to calculate trajectory features based off the |
4
|
|
|
ImageJ plugin TrajClassifer by Thorsten Wagner. See details at |
5
|
|
|
https://imagej.net/TraJClassifier. |
6
|
|
|
|
7
|
|
|
""" |
8
|
|
|
|
9
|
|
|
import math |
10
|
|
|
import struct |
11
|
|
|
|
12
|
|
|
import pandas as pd |
13
|
|
|
import numpy as np |
14
|
|
|
import numpy.linalg as LA |
15
|
|
|
import numpy.ma as ma |
16
|
|
|
from scipy.optimize import curve_fit |
17
|
|
|
import matplotlib.pyplot as plt |
18
|
|
|
import diff_classifier.msd as msd |
19
|
|
|
|
20
|
|
|
|
21
|
|
View Code Duplication |
def unmask_track(track): |
|
|
|
|
22
|
|
|
"""Removes empty frames from inpute trajectory datset. |
23
|
|
|
|
24
|
|
|
Parameters |
25
|
|
|
---------- |
26
|
|
|
track : pandas.core.frame.DataFrame |
27
|
|
|
At a minimum, must contain a Frame, Track_ID, X, Y, MSDs, and |
28
|
|
|
Gauss column. |
29
|
|
|
|
30
|
|
|
Returns |
31
|
|
|
------- |
32
|
|
|
comp_track : pandas.core.frame.DataFrame |
33
|
|
|
Similar to track, but has all masked components removed. |
34
|
|
|
|
35
|
|
|
""" |
36
|
|
|
xpos = ma.masked_invalid(track['X']) |
37
|
|
|
msds = ma.masked_invalid(track['MSDs']) |
38
|
|
|
x_mask = ma.getmask(xpos) |
39
|
|
|
msd_mask = ma.getmask(msds) |
40
|
|
|
comp_frame = ma.compressed(ma.masked_where(msd_mask, track['Frame'])) |
41
|
|
|
compid = ma.compressed(ma.masked_where(msd_mask, track['Track_ID'])) |
42
|
|
|
comp_x = ma.compressed(ma.masked_where(x_mask, track['X'])) |
43
|
|
|
comp_y = ma.compressed(ma.masked_where(x_mask, track['Y'])) |
44
|
|
|
comp_msd = ma.compressed(ma.masked_where(msd_mask, track['MSDs'])) |
45
|
|
|
comp_gauss = ma.compressed(ma.masked_where(msd_mask, track['Gauss'])) |
46
|
|
|
comp_qual = ma.compressed(ma.masked_where(x_mask, track['Quality'])) |
47
|
|
|
comp_snr = ma.compressed(ma.masked_where(x_mask, track['SN_Ratio'])) |
48
|
|
|
comp_meani = ma.compressed(ma.masked_where(x_mask, |
49
|
|
|
track['Mean_Intensity'])) |
50
|
|
|
|
51
|
|
|
data1 = {'Frame': comp_frame, |
52
|
|
|
'Track_ID': compid, |
53
|
|
|
'X': comp_x, |
54
|
|
|
'Y': comp_y, |
55
|
|
|
'MSDs': comp_msd, |
56
|
|
|
'Gauss': comp_gauss, |
57
|
|
|
'Quality': comp_qual, |
58
|
|
|
'SN_Ratio': comp_snr, |
59
|
|
|
'Mean_Intensity': comp_meani |
60
|
|
|
} |
|
|
|
|
61
|
|
|
comp_track = pd.DataFrame(data=data1) |
62
|
|
|
return comp_track |
63
|
|
|
|
64
|
|
|
|
65
|
|
View Code Duplication |
def alpha_calc(track): |
|
|
|
|
66
|
|
|
"""Calculates alpha, the exponential fit parameter for MSD data |
67
|
|
|
|
68
|
|
|
Parameters |
69
|
|
|
---------- |
70
|
|
|
track : pandas.core.frame.DataFrame |
71
|
|
|
At a minimum, must contain a Frames and a MSDs column. The function |
72
|
|
|
msd_calc can be used to generate the correctly formatted pd dataframe. |
73
|
|
|
|
74
|
|
|
Returns |
75
|
|
|
------- |
76
|
|
|
alph : numpy.float64 |
77
|
|
|
The anomalous exponent derived by fitting MSD values to the function, |
78
|
|
|
<rad**2(n)> = 4*dcoef*(n*delt)**alph |
79
|
|
|
dcoef : numpy.float64 |
80
|
|
|
The fitted diffusion coefficient derived by fitting MSD values to the |
81
|
|
|
function above. |
82
|
|
|
|
83
|
|
|
Examples |
84
|
|
|
-------- |
85
|
|
|
>>> frames = 5 |
86
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
87
|
|
|
... 'X': np.linspace(1, frames, frames)+5, |
88
|
|
|
... 'Y': np.linspace(1, frames, frames)+3} |
89
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
90
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
91
|
|
|
>>> alpha_calc(dframe) |
92
|
|
|
(2.0000000000000004, 0.4999999999999999) |
93
|
|
|
|
94
|
|
|
>>> frames = 10 |
95
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
96
|
|
|
... 'X': np.sin(np.linspace(1, frames, frames)+3), |
97
|
|
|
... 'Y': np.cos(np.linspace(1, frames, frames)+3)} |
98
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
99
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
100
|
|
|
>>> alpha_calc(dframe) |
101
|
|
|
(0.023690002018364065, 0.5144436515510022) |
102
|
|
|
|
103
|
|
|
""" |
104
|
|
|
|
105
|
|
|
ypos = track['MSDs'] |
106
|
|
|
xpos = track['Frame'] |
107
|
|
|
|
108
|
|
|
def msd_alpha(xpos, alph, dcoef): |
109
|
|
|
return 4*dcoef*(xpos**alph) |
110
|
|
|
|
111
|
|
|
try: |
112
|
|
|
popt, pcov = curve_fit(msd_alpha, xpos, ypos) |
113
|
|
|
alph = popt[0] |
114
|
|
|
dcoef = popt[1] |
115
|
|
|
except RuntimeError: |
116
|
|
|
print('Optimal parameters not found. Print NaN instead.') |
117
|
|
|
alph = np.nan |
118
|
|
|
dcoef = np.nan |
119
|
|
|
return alph, dcoef |
120
|
|
|
|
121
|
|
|
|
122
|
|
View Code Duplication |
def gyration_tensor(track): |
|
|
|
|
123
|
|
|
"""Calculates the eigenvalues and eigenvectors of the gyration tensor of the |
124
|
|
|
input trajectory. |
125
|
|
|
|
126
|
|
|
Parameters |
127
|
|
|
---------- |
128
|
|
|
track : pandas DataFrame |
129
|
|
|
At a minimum, must contain an X and Y column. The function |
130
|
|
|
msd_calc can be used to generate the correctly formatted pd dataframe. |
131
|
|
|
|
132
|
|
|
Returns |
133
|
|
|
------- |
134
|
|
|
eig1 : numpy.float64 |
135
|
|
|
Dominant eigenvalue of the gyration tensor. |
136
|
|
|
eig2 : numpy.float64 |
137
|
|
|
Secondary eigenvalue of the gyration tensor. |
138
|
|
|
eigv1 : numpy.ndarray |
139
|
|
|
Dominant eigenvector of the gyration tensor. |
140
|
|
|
eigv2 : numpy.ndarray |
141
|
|
|
Secondary eigenvector of the gyration tensor. |
142
|
|
|
|
143
|
|
|
Examples |
144
|
|
|
-------- |
145
|
|
|
>>> frames = 5 |
146
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
147
|
|
|
... 'X': np.linspace(1, frames, frames)+5, |
148
|
|
|
... 'Y': np.linspace(1, frames, frames)+3} |
149
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
150
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
151
|
|
|
>>> gyration_tensor(dframe) |
152
|
|
|
(4.0, |
153
|
|
|
4.4408920985006262e-16, |
154
|
|
|
array([ 0.70710678, -0.70710678]), |
155
|
|
|
array([ 0.70710678, 0.70710678])) |
156
|
|
|
|
157
|
|
|
>>> frames = 10 |
158
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
159
|
|
|
... 'X': np.sin(np.linspace(1, frames, frames)+3), |
160
|
|
|
... 'Y': np.cos(np.linspace(1, frames, frames)+3)} |
161
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
162
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
163
|
|
|
>>> gyration_tensor(dframe) |
164
|
|
|
(0.53232560128104522, |
165
|
|
|
0.42766829138901619, |
166
|
|
|
array([ 0.6020119 , -0.79848711]), |
167
|
|
|
array([-0.79848711, -0.6020119 ])) |
168
|
|
|
|
169
|
|
|
""" |
170
|
|
|
|
171
|
|
|
dframe = track |
172
|
|
|
assert isinstance(dframe, pd.core.frame.DataFrame), "track must be a pandas\ |
173
|
|
|
dataframe." |
174
|
|
|
assert isinstance(dframe['X'], pd.core.series.Series), "track must contain\ |
175
|
|
|
X column." |
176
|
|
|
assert isinstance(dframe['Y'], pd.core.series.Series), "track must contain\ |
177
|
|
|
Y column." |
178
|
|
|
assert dframe.shape[0] > 0, "track must not be empty." |
179
|
|
|
|
180
|
|
|
matrixa = np.sum((dframe['X'] - np.mean( |
181
|
|
|
dframe['X']))**2)/dframe['X'].shape[0] |
|
|
|
|
182
|
|
|
matrixb = np.sum((dframe['Y'] - np.mean( |
183
|
|
|
dframe['Y']))**2)/dframe['Y'].shape[0] |
|
|
|
|
184
|
|
|
matrixab = np.sum((dframe['X'] - np.mean( |
185
|
|
|
dframe['X']))*(dframe['Y'] - np.mean( |
|
|
|
|
186
|
|
|
dframe['Y'])))/dframe['X'].shape[0] |
|
|
|
|
187
|
|
|
|
188
|
|
|
eigvals, eigvecs = LA.eig(np.array([[matrixa, matrixab], |
189
|
|
|
[matrixab, matrixb]])) |
|
|
|
|
190
|
|
|
dom = np.argmax(np.abs(eigvals)) |
191
|
|
|
rec = np.argmin(np.abs(eigvals)) |
192
|
|
|
eig1 = eigvals[dom] |
193
|
|
|
eig2 = eigvals[rec] |
194
|
|
|
eigv1 = eigvecs[dom] |
195
|
|
|
eigv2 = eigvecs[rec] |
196
|
|
|
return eig1, eig2, eigv1, eigv2 |
197
|
|
|
|
198
|
|
|
|
199
|
|
View Code Duplication |
def kurtosis(track): |
|
|
|
|
200
|
|
|
"""Calculates the kurtosis of input track. |
201
|
|
|
|
202
|
|
|
Parameters |
203
|
|
|
---------- |
204
|
|
|
track : pandas.core.frame.DataFrame |
205
|
|
|
At a minimum, must contain an X and Y column. The function |
206
|
|
|
msd_calc can be used to generate the correctly formatted pd dataframe. |
207
|
|
|
|
208
|
|
|
Returns |
209
|
|
|
------- |
210
|
|
|
kurt : numpy.float64 |
211
|
|
|
Kurtosis of the input track. Calculation based on projected 2D |
212
|
|
|
positions on the dominant eigenvector of the radius of gyration tensor. |
213
|
|
|
|
214
|
|
|
Examples |
215
|
|
|
-------- |
216
|
|
|
>>> frames = 5 |
217
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
218
|
|
|
... 'X': np.linspace(1, frames, frames)+5, |
219
|
|
|
... 'Y': np.linspace(1, frames, frames)+3} |
220
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
221
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
222
|
|
|
>>> kurtosis(dframe) |
223
|
|
|
2.5147928994082829 |
224
|
|
|
|
225
|
|
|
>>> frames = 10 |
226
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
227
|
|
|
... 'X': np.sin(np.linspace(1, frames, frames)+3), |
228
|
|
|
... 'Y': np.cos(np.linspace(1, frames, frames)+3)} |
229
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
230
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
231
|
|
|
>>> kurtosis(dframe) |
232
|
|
|
1.8515139698652476 |
233
|
|
|
|
234
|
|
|
""" |
235
|
|
|
|
236
|
|
|
dframe = track |
237
|
|
|
assert isinstance(dframe, pd.core.frame.DataFrame), "track must be a pandas\ |
238
|
|
|
dataframe." |
239
|
|
|
assert isinstance(dframe['X'], pd.core.series.Series), "track must contain\ |
240
|
|
|
X column." |
241
|
|
|
assert isinstance(dframe['Y'], pd.core.series.Series), "track must contain\ |
242
|
|
|
Y column." |
243
|
|
|
assert dframe.shape[0] > 0, "track must not be empty." |
244
|
|
|
|
245
|
|
|
eig1, eig2, eigv1, eigv2 = gyration_tensor(dframe) |
246
|
|
|
projection = dframe['X']*eigv1[0] + dframe['Y']*eigv1[1] |
247
|
|
|
|
248
|
|
|
kurt = np.mean((projection - np.mean( |
249
|
|
|
projection))**4/(np.std(projection)**4)) |
|
|
|
|
250
|
|
|
|
251
|
|
|
return kurt |
252
|
|
|
|
253
|
|
|
|
254
|
|
View Code Duplication |
def asymmetry(track): |
|
|
|
|
255
|
|
|
"""Calculates the asymmetry of the trajectory. |
256
|
|
|
|
257
|
|
|
Parameters |
258
|
|
|
---------- |
259
|
|
|
track : pandas DataFrame |
260
|
|
|
At a minimum, must contain an X and Y column. The function |
261
|
|
|
msd_calc can be used to generate the correctly formatted pd dataframe. |
262
|
|
|
|
263
|
|
|
Returns |
264
|
|
|
------- |
265
|
|
|
eig1 : numpy.float64 |
266
|
|
|
Dominant eigenvalue of the gyration tensor. |
267
|
|
|
eig2 : numpy.float64 |
268
|
|
|
Secondary eigenvalue of the gyration tensor. |
269
|
|
|
asym1 : numpy.float64 |
270
|
|
|
asymmetry of the input track. Equal to 0 for circularly symmetric |
271
|
|
|
tracks, and 1 for linear tracks. |
272
|
|
|
asym2 : numpy.float64 |
273
|
|
|
alternate definition of asymmetry. Equal to 1 for circularly |
274
|
|
|
symmetric tracks, and 0 for linear tracks. |
275
|
|
|
asym3 : numpy.float64 |
276
|
|
|
alternate definition of asymmetry. |
277
|
|
|
|
278
|
|
|
Examples |
279
|
|
|
-------- |
280
|
|
|
>>> frames = 10 |
281
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
282
|
|
|
... 'X': np.linspace(1, frames, frames)+5, |
283
|
|
|
... 'Y': np.linspace(1, frames, frames)+3} |
284
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
285
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
286
|
|
|
>>> asymmetry(dframe) |
287
|
|
|
(16.5, 0.0, 1.0, 0.0, 0.69314718055994529) |
288
|
|
|
|
289
|
|
|
>>> frames = 10 |
290
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
291
|
|
|
... 'X': np.sin(np.linspace(1, frames, frames)+3), |
292
|
|
|
... 'Y': np.cos(np.linspace(1, frames, frames)+3)} |
293
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
294
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
295
|
|
|
>>> asymmetry(dframe) |
296
|
|
|
(0.53232560128104522, |
297
|
|
|
0.42766829138901619, |
298
|
|
|
0.046430119259539708, |
299
|
|
|
0.80339606128247354, |
300
|
|
|
0.0059602683290953052) |
301
|
|
|
|
302
|
|
|
""" |
303
|
|
|
dframe = track |
304
|
|
|
assert isinstance(dframe, pd.core.frame.DataFrame), "track must be a pandas\ |
305
|
|
|
dataframe." |
306
|
|
|
assert isinstance(dframe['X'], pd.core.series.Series), "track must contain\ |
307
|
|
|
X column." |
308
|
|
|
assert isinstance(dframe['Y'], pd.core.series.Series), "track must contain\ |
309
|
|
|
Y column." |
310
|
|
|
assert dframe.shape[0] > 0, "track must not be empty." |
311
|
|
|
|
312
|
|
|
eig1, eig2, eigv1, eigv2 = gyration_tensor(track) |
313
|
|
|
asym1 = (eig1**2 - eig2**2)**2/(eig1**2 + eig2**2)**2 |
314
|
|
|
asym2 = eig2/eig1 |
315
|
|
|
asym3 = -np.log(1-((eig1-eig2)**2)/(2*(eig1+eig2)**2)) |
316
|
|
|
|
317
|
|
|
return eig1, eig2, asym1, asym2, asym3 |
318
|
|
|
|
319
|
|
|
|
320
|
|
View Code Duplication |
def minboundrect(track): |
|
|
|
|
321
|
|
|
"""Calculates the minimum bounding rectangle of an input trajectory. |
322
|
|
|
|
323
|
|
|
Parameters |
324
|
|
|
---------- |
325
|
|
|
dframe : pandas.core.frame.DataFrame |
326
|
|
|
At a minimum, must contain an X and Y column. The function |
327
|
|
|
msd_calc can be used to generate the correctly formatted pd dataframe. |
328
|
|
|
|
329
|
|
|
Returns |
330
|
|
|
------- |
331
|
|
|
rot_angle : numpy.float64 |
332
|
|
|
Angle of rotation of the bounding box. |
333
|
|
|
area : numpy.float64 |
334
|
|
|
Area of the bounding box. |
335
|
|
|
width : numpy.float64 |
336
|
|
|
Width of the bounding box. |
337
|
|
|
height : numpy.float64 |
338
|
|
|
Height of the bounding box. |
339
|
|
|
center_point : numpy.ndarray |
340
|
|
|
Center point of the bounding box. |
341
|
|
|
corner_pts : numpy.ndarray |
342
|
|
|
Corner points of the bounding box. |
343
|
|
|
|
344
|
|
|
Examples |
345
|
|
|
-------- |
346
|
|
|
>>> frames = 10 |
347
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
348
|
|
|
... 'X': np.linspace(1, frames, frames)+5, |
349
|
|
|
... 'Y': np.linspace(1, frames, frames)+3} |
350
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
351
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
352
|
|
|
>>> minboundrect(dframe) |
353
|
|
|
(-2.3561944901923448, |
354
|
|
|
2.8261664256307952e-14, |
355
|
|
|
12.727922061357855, |
356
|
|
|
2.2204460492503131e-15, |
357
|
|
|
array([ 10.5, 8.5]), |
358
|
|
|
array([[ 6., 4.], |
359
|
|
|
[ 15., 13.], |
360
|
|
|
[ 15., 13.], |
361
|
|
|
[ 6., 4.]])) |
362
|
|
|
|
363
|
|
|
>>> frames = 10 |
364
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
365
|
|
|
... 'X': np.sin(np.linspace(1, frames, frames))+3, |
366
|
|
|
... 'Y': np.cos(np.linspace(1, frames, frames))+3} |
367
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
368
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
369
|
|
|
>>> minboundrect(dframe) |
370
|
|
|
(0.78318530717958657, |
371
|
|
|
3.6189901131223992, |
372
|
|
|
1.9949899732081091, |
373
|
|
|
1.8140392491811692, |
374
|
|
|
array([ 3.02076903, 2.97913884]), |
375
|
|
|
array([[ 4.3676025 , 3.04013439], |
376
|
|
|
[ 2.95381341, 1.63258851], |
377
|
|
|
[ 1.67393557, 2.9181433 ], |
378
|
|
|
[ 3.08772466, 4.32568917]])) |
379
|
|
|
|
380
|
|
|
Notes |
381
|
|
|
----- |
382
|
|
|
Based off of code from the following repo: |
383
|
|
|
https://github.com/dbworth/minimum-area-bounding-rectangle/blob/master/ |
384
|
|
|
python/min_bounding_rect.py |
385
|
|
|
|
386
|
|
|
""" |
387
|
|
|
|
388
|
|
|
dframe = track |
389
|
|
|
assert isinstance(dframe, pd.core.frame.DataFrame), "track must be a pandas\ |
390
|
|
|
dataframe." |
391
|
|
|
assert isinstance(dframe['X'], pd.core.series.Series), "track must contain\ |
392
|
|
|
X column." |
393
|
|
|
assert isinstance(dframe['Y'], pd.core.series.Series), "track must contain\ |
394
|
|
|
Y column." |
395
|
|
|
assert dframe.shape[0] > 0, "track must not be empty." |
396
|
|
|
|
397
|
|
|
df2 = np.zeros((dframe.shape[0]+1, 2)) |
398
|
|
|
df2[:-1, :] = dframe[['X', 'Y']].values |
399
|
|
|
df2[-1, :] = dframe[['X', 'Y']].values[0, :] |
400
|
|
|
hull_points_2d = df2 |
401
|
|
|
|
402
|
|
|
edges = np.zeros((len(hull_points_2d)-1, 2)) |
403
|
|
|
|
404
|
|
|
for i in range(len(edges)): |
|
|
|
|
405
|
|
|
edge_x = hull_points_2d[i+1, 0] - hull_points_2d[i, 0] |
406
|
|
|
edge_y = hull_points_2d[i+1, 1] - hull_points_2d[i, 1] |
407
|
|
|
edges[i] = [edge_x, edge_y] |
408
|
|
|
|
409
|
|
|
edge_angles = np.zeros((len(edges))) |
410
|
|
|
|
411
|
|
|
for i in range(len(edge_angles)): |
412
|
|
|
edge_angles[i] = math.atan2(edges[i, 1], edges[i, 0]) |
413
|
|
|
edge_angles = np.unique(edge_angles) |
414
|
|
|
|
415
|
|
|
start_area = 2 ** (struct.Struct('i').size * 8 - 1) - 1 |
416
|
|
|
min_bbox = (0, start_area, 0, 0, 0, 0, 0, 0) |
417
|
|
|
for i in range(len(edge_angles)): |
418
|
|
|
rads = np.array([[math.cos(edge_angles[i]), |
419
|
|
|
math.cos(edge_angles[i]-(math.pi/2))], |
420
|
|
|
[math.cos(edge_angles[i]+(math.pi/2)), |
|
|
|
|
421
|
|
|
math.cos(edge_angles[i])]]) |
422
|
|
|
|
423
|
|
|
rot_points = np.dot(rads, np.transpose(hull_points_2d)) |
424
|
|
|
|
425
|
|
|
min_x = np.nanmin(rot_points[0], axis=0) |
426
|
|
|
max_x = np.nanmax(rot_points[0], axis=0) |
427
|
|
|
min_y = np.nanmin(rot_points[1], axis=0) |
428
|
|
|
max_y = np.nanmax(rot_points[1], axis=0) |
429
|
|
|
|
430
|
|
|
width = max_x - min_x |
431
|
|
|
height = max_y - min_y |
432
|
|
|
area = width*height |
433
|
|
|
|
434
|
|
|
if area < min_bbox[1]: |
435
|
|
|
min_bbox = (edge_angles[i], area, width, height, |
436
|
|
|
min_x, max_x, min_y, max_y) |
437
|
|
|
|
438
|
|
|
angle = min_bbox[0] |
439
|
|
|
rads = np.array([[math.cos(angle), math.cos(angle-(math.pi/2))], |
440
|
|
|
[math.cos(angle+(math.pi/2)), math.cos(angle)]]) |
441
|
|
|
|
442
|
|
|
min_x = min_bbox[4] |
443
|
|
|
max_x = min_bbox[5] |
444
|
|
|
min_y = min_bbox[6] |
445
|
|
|
max_y = min_bbox[7] |
446
|
|
|
|
447
|
|
|
center_x = (min_x + max_x)/2 |
448
|
|
|
center_y = (min_y + max_y)/2 |
449
|
|
|
center_point = np.dot([center_x, center_y], rads) |
450
|
|
|
|
451
|
|
|
corner_pts = np.zeros((4, 2)) |
452
|
|
|
corner_pts[0] = np.dot([max_x, min_y], rads) |
453
|
|
|
corner_pts[1] = np.dot([min_x, min_y], rads) |
454
|
|
|
corner_pts[2] = np.dot([min_x, max_y], rads) |
455
|
|
|
corner_pts[3] = np.dot([max_x, max_y], rads) |
456
|
|
|
|
457
|
|
|
return (angle, min_bbox[1], min_bbox[2], min_bbox[3], |
458
|
|
|
center_point, corner_pts) |
459
|
|
|
|
460
|
|
|
|
461
|
|
View Code Duplication |
def aspectratio(track): |
|
|
|
|
462
|
|
|
"""Calculates the aspect ratio of the rectangle containing the input track. |
463
|
|
|
|
464
|
|
|
Parameters |
465
|
|
|
---------- |
466
|
|
|
track : pandas.core.frame.DataFrame |
467
|
|
|
At a minimum, must contain an X and Y column. The function |
468
|
|
|
msd_calc can be used to generate the correctly formatted pd dataframe. |
469
|
|
|
|
470
|
|
|
Returns |
471
|
|
|
------- |
472
|
|
|
aspratio : numpy.float64 |
473
|
|
|
aspect ratio of the trajectory. Always >= 1. |
474
|
|
|
elong : numpy.float64 |
475
|
|
|
elongation of the trajectory. A transformation of the aspect ratio |
476
|
|
|
given by 1 - aspratio**-1. |
477
|
|
|
|
478
|
|
|
Examples |
479
|
|
|
-------- |
480
|
|
|
>>> frames = 10 |
481
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
482
|
|
|
... 'X': np.linspace(1, frames, frames)+5, |
483
|
|
|
... 'Y': np.linspace(1, frames, frames)+3} |
484
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
485
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
486
|
|
|
>>> aspectratio(dframe) |
487
|
|
|
(5732146505273195.0, 0.99999999999999978) |
488
|
|
|
|
489
|
|
|
>>> frames = 10 |
490
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
491
|
|
|
... 'X': np.sin(np.linspace(1, frames, frames))+3, |
492
|
|
|
... 'Y': np.cos(np.linspace(1, frames, frames))+3} |
493
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
494
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
495
|
|
|
>>> aspectratio(dframe) |
496
|
|
|
(1.0997501702946164, 0.090702573174318291) |
497
|
|
|
|
498
|
|
|
""" |
499
|
|
|
|
500
|
|
|
dframe = track |
501
|
|
|
assert isinstance(dframe, pd.core.frame.DataFrame), "track must be a pandas\ |
502
|
|
|
dataframe." |
503
|
|
|
assert isinstance(dframe['X'], pd.core.series.Series), "track must contain\ |
504
|
|
|
X column." |
505
|
|
|
assert isinstance(dframe['Y'], pd.core.series.Series), "track must contain\ |
506
|
|
|
Y column." |
507
|
|
|
assert dframe.shape[0] > 0, "track must not be empty." |
508
|
|
|
|
509
|
|
|
rangle, area, width, height, center_point, corner_pts = minboundrect(track) |
510
|
|
|
aspratio = width/height |
511
|
|
|
if aspratio > 1: |
512
|
|
|
aspratio = aspratio |
513
|
|
|
else: |
514
|
|
|
aspratio = 1/aspratio |
515
|
|
|
elong = 1 - (1/aspratio) |
516
|
|
|
|
517
|
|
|
return aspratio, elong, center_point |
518
|
|
|
|
519
|
|
|
|
520
|
|
View Code Duplication |
def boundedness(track, framerate=1): |
|
|
|
|
521
|
|
|
"""Calculates the boundedness, fractal dimension, and trappedness of the |
522
|
|
|
input track. |
523
|
|
|
|
524
|
|
|
Parameters |
525
|
|
|
---------- |
526
|
|
|
track : pandas.core.frame.DataFrame |
527
|
|
|
At a minimum, must contain a Frames and a MSDs column. The function |
528
|
|
|
msd_calc can be used to generate the correctly formatted pd dataframe. |
529
|
|
|
framerate : framrate of the video being analyzed. Actually cancels out. So |
530
|
|
|
why did I include this. Default is 1. |
531
|
|
|
|
532
|
|
|
Returns |
533
|
|
|
------- |
534
|
|
|
bound : float |
535
|
|
|
Boundedness of the input track. Quantifies how much a particle with |
536
|
|
|
diffusion coefficient dcoef is restricted by a circular confinement of |
537
|
|
|
radius rad when it diffuses for a time duration N*delt. Defined as |
538
|
|
|
bound = dcoef*N*delt/rad**2. For this case, dcoef is the short time |
539
|
|
|
diffusion coefficient (after 2 frames), and rad is half the maximum |
540
|
|
|
distance between any two positions. |
541
|
|
|
fractd : float |
542
|
|
|
The fractal path dimension defined as fractd = log(N)/log(N*data1*l**-1) |
543
|
|
|
where netdisp is the total length (sum over all steplengths), N is the |
544
|
|
|
number of steps, and data1 is the largest distance between any two |
545
|
|
|
positions. |
546
|
|
|
probf : float |
547
|
|
|
The probability that a particle with diffusion coefficient dcoef and |
548
|
|
|
traced for a period of time N*delt is trapped in region r0. Given by |
549
|
|
|
pt = 1 - exp(0.2048 - 0.25117*(dcoef*N*delt/r0**2)). For this case, |
550
|
|
|
dcoef is the short time diffusion coefficient, and r0 is half the |
551
|
|
|
maximum distance between any two positions. |
552
|
|
|
|
553
|
|
|
Examples |
554
|
|
|
-------- |
555
|
|
|
>>> frames = 10 |
556
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
557
|
|
|
... 'X': np.linspace(1, frames, frames)+5, |
558
|
|
|
... 'Y': np.linspace(1, frames, frames)+3} |
559
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
560
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
561
|
|
|
>>> boundedness(dframe) |
562
|
|
|
(1.0, 1.0000000000000002, 0.045311337970735499) |
563
|
|
|
|
564
|
|
|
>>> frames = 10 |
565
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
566
|
|
|
... 'X': np.sin(np.linspace(1, frames, frames)+3), |
567
|
|
|
... 'Y': np.cos(np.linspace(1, frames, frames)+3)} |
568
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
569
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
570
|
|
|
>>> boundedness(dframe) |
571
|
|
|
(0.96037058689895005, 2.9989749477908401, 0.03576118370932313) |
572
|
|
|
|
573
|
|
|
""" |
574
|
|
|
|
575
|
|
|
dframe = track |
576
|
|
|
assert isinstance(dframe, pd.core.frame.DataFrame), "track must be a pandas\ |
577
|
|
|
dataframe." |
578
|
|
|
assert isinstance(dframe['X'], pd.core.series.Series), "track must contain\ |
579
|
|
|
X column." |
580
|
|
|
assert isinstance(dframe['Y'], pd.core.series.Series), "track must contain\ |
581
|
|
|
Y column." |
582
|
|
|
assert dframe.shape[0] > 0, "track must not be empty." |
583
|
|
|
|
584
|
|
|
dframe = track |
585
|
|
|
|
586
|
|
|
if dframe.shape[0] > 2: |
587
|
|
|
length = dframe.shape[0] |
588
|
|
|
distance = np.zeros((length, length)) |
589
|
|
|
|
590
|
|
|
for frame in range(0, length-1): |
|
|
|
|
591
|
|
|
distance[frame, 0:length-frame-1] =\ |
592
|
|
|
(np.sqrt(msd.nth_diff(dframe['X'], frame+1)**2 + |
593
|
|
|
msd.nth_diff(dframe['Y'], frame+1)**2).values) |
|
|
|
|
594
|
|
|
|
595
|
|
|
netdisp = np.sum((np.sqrt(msd.nth_diff(dframe['X'], 1)**2 + |
596
|
|
|
msd.nth_diff(dframe['Y'], 1)**2).values)) |
597
|
|
|
rad = np.max(distance)/2 |
598
|
|
|
N = dframe['Frame'][dframe['Frame'].shape[0]-1] |
599
|
|
|
fram = N*framerate |
600
|
|
|
dcoef = dframe['MSDs'][2]/(4*fram) |
601
|
|
|
|
602
|
|
|
bound = dcoef*fram/(rad**2) |
603
|
|
|
fractd = np.log(N)/np.log(N*2*rad/netdisp) |
604
|
|
|
probf = 1 - np.exp(0.2048 - 0.25117*(dcoef*fram/(rad**2))) |
605
|
|
|
else: |
606
|
|
|
bound = np.nan |
607
|
|
|
fractd = np.nan |
608
|
|
|
probf = np.nan |
609
|
|
|
|
610
|
|
|
return bound, fractd, probf |
611
|
|
|
|
612
|
|
|
|
613
|
|
View Code Duplication |
def efficiency(track): |
|
|
|
|
614
|
|
|
"""Calculates the efficiency and straitness of the input track |
615
|
|
|
|
616
|
|
|
Parameters |
617
|
|
|
---------- |
618
|
|
|
track : pandas.core.frame.DataFrame |
619
|
|
|
At a minimum, must contain a Frames and a MSDs column. The function |
620
|
|
|
msd_calc can be used to generate the correctly formatted pd dataframe. |
621
|
|
|
|
622
|
|
|
Returns |
623
|
|
|
------- |
624
|
|
|
eff : float |
625
|
|
|
Efficiency of the input track. Relates the sum of squared step |
626
|
|
|
lengths. Based on Helmuth et al. (2007) and defined as: |
627
|
|
|
E = |xpos(N-1)-xpos(0)|**2/SUM(|xpos(i) - xpos(i-1)|**2 |
628
|
|
|
strait : float |
629
|
|
|
Relates the net displacement netdisp to the sum of step lengths and is |
630
|
|
|
defined as: |
631
|
|
|
S = |xpos(N-1)-xpos(0)|/SUM(|xpos(i) - xpos(i-1)| |
632
|
|
|
|
633
|
|
|
Examples |
634
|
|
|
-------- |
635
|
|
|
>>> frames = 10 |
636
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
637
|
|
|
... 'X': np.linspace(1, frames, frames)+5, |
638
|
|
|
... 'Y': np.linspace(1, frames, frames)+3} |
639
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
640
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
641
|
|
|
>>> ft.efficiency(dframe) |
642
|
|
|
(9.0, 0.9999999999999999) |
643
|
|
|
|
644
|
|
|
>>> frames = 10 |
645
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
646
|
|
|
... 'X': np.sin(np.linspace(1, frames, frames))+3, |
647
|
|
|
... 'Y': np.cos(np.linspace(1, frames, frames))+3} |
648
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
649
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
650
|
|
|
>>> ft.efficiency(dframe) |
651
|
|
|
(0.46192924086141945, 0.22655125514290225) |
652
|
|
|
|
653
|
|
|
""" |
654
|
|
|
|
655
|
|
|
dframe = track |
656
|
|
|
length = dframe.shape[0] |
657
|
|
|
num = (msd.nth_diff(dframe['X'], |
658
|
|
|
length-1)**2 + msd.nth_diff(dframe['Y'], |
659
|
|
|
length-1)**2)[0] |
660
|
|
|
num2 = np.sqrt(num) |
661
|
|
|
|
662
|
|
|
den = np.sum(msd.nth_diff(dframe['X'], |
663
|
|
|
1)**2 + msd.nth_diff(dframe['Y'], 1)**2) |
664
|
|
|
den2 = np.sum(np.sqrt(msd.nth_diff(dframe['X'], |
665
|
|
|
1)**2 + msd.nth_diff(dframe['Y'], 1)**2)) |
|
|
|
|
666
|
|
|
|
667
|
|
|
eff = num/den |
668
|
|
|
strait = num2/den2 |
669
|
|
|
return eff, strait |
670
|
|
|
|
671
|
|
|
|
672
|
|
View Code Duplication |
def msd_ratio(track, fram1=3, fram2=100): |
|
|
|
|
673
|
|
|
"""Calculates the MSD ratio of the input track at the specified frames. |
674
|
|
|
|
675
|
|
|
Parameters |
676
|
|
|
---------- |
677
|
|
|
track : pandas.core.frame.DataFrame |
678
|
|
|
At a minimum, must contain a Frames and a MSDs column. The function |
679
|
|
|
msd_calc can be used to generate the correctly formatted pd dataframe. |
680
|
|
|
fram1 : int |
681
|
|
|
First frame at which to calculate the MSD ratio. |
682
|
|
|
fram2 : int |
683
|
|
|
Last frame at which to calculate the MSD ratio. |
684
|
|
|
|
685
|
|
|
Returns |
686
|
|
|
------- |
687
|
|
|
ratio: numpy.float64 |
688
|
|
|
MSD ratio as defined by |
689
|
|
|
[MSD(fram1)/MSD(fram2)] - [fram1/fram2] |
690
|
|
|
where fram1 < fram2. For Brownian motion, it is 0; for restricted |
691
|
|
|
motion it is < 0. For directed motion it is > 0. |
692
|
|
|
|
693
|
|
|
Examples |
694
|
|
|
-------- |
695
|
|
|
>>> frames = 10 |
696
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
697
|
|
|
... 'X': np.linspace(1, frames, frames)+5, |
698
|
|
|
... 'Y': np.linspace(1, frames, frames)+3} |
699
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
700
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
701
|
|
|
>>> ft.msd_ratio(dframe, 1, 9) |
702
|
|
|
-0.18765432098765433 |
703
|
|
|
|
704
|
|
|
>>> frames = 10 |
705
|
|
|
>>> data1 = {'Frame': np.linspace(1, frames, frames), |
706
|
|
|
... 'X': np.sin(np.linspace(1, frames, frames))+3, |
707
|
|
|
... 'Y': np.cos(np.linspace(1, frames, frames))+3} |
708
|
|
|
>>> dframe = pd.DataFrame(data=data1) |
709
|
|
|
>>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) |
710
|
|
|
>>> ft.msd_ratio(dframe, 1, 9) |
711
|
|
|
0.04053708075268797 |
712
|
|
|
|
713
|
|
|
""" |
714
|
|
|
|
715
|
|
|
dframe = track |
716
|
|
|
assert fram1 < fram2, "fram1 must be less than fram2" |
717
|
|
|
ratio = (dframe['MSDs'][fram1]/dframe['MSDs'][fram2]) - ( |
718
|
|
|
dframe['Frame'][fram1]/dframe['Frame'][fram2]) |
|
|
|
|
719
|
|
|
return ratio |
720
|
|
|
|
721
|
|
|
|
722
|
|
View Code Duplication |
def calculate_features(dframe, framerate=1, frame=(10, 100), mean_values=True): |
|
|
|
|
723
|
|
|
"""test test test Calculates multiple features from input MSD dataset and stores in pandas |
724
|
|
|
dataframe. |
725
|
|
|
|
726
|
|
|
Parameters |
727
|
|
|
---------- |
728
|
|
|
dframe : pandas.core.frame.DataFrame |
729
|
|
|
Output from msd.all_msds2. Must have at a minimum the following |
730
|
|
|
columns: |
731
|
|
|
Track_ID, Frame, X, Y, and MSDs. |
732
|
|
|
framerate : int or float |
733
|
|
|
Framerate of the input videos from which trajectories were calculated. |
734
|
|
|
Required for accurate calculation of some features. Default is 1. |
735
|
|
|
Possibly not required. Ignore if performing all calcuations without |
736
|
|
|
units. |
737
|
|
|
frame : int |
738
|
|
|
Frame at which to calculate Deff |
739
|
|
|
|
740
|
|
|
Returns |
741
|
|
|
------- |
742
|
|
|
datai: pandas.core.frame.DataFrame |
743
|
|
|
Contains a row for each trajectory in dframe. Holds the following |
744
|
|
|
features of each trajetory: Track_ID, alpha, D_fit, kurtosis, |
745
|
|
|
asymmetry1, asymmetry2, asymmetry3, aspect ratio (AR), elongation, |
746
|
|
|
boundedness, fractal dimension (fractal_dim), trappedness, efficiency, |
747
|
|
|
straightness, MSD ratio, frames, X, and Y. |
748
|
|
|
|
749
|
|
|
Examples |
750
|
|
|
-------- |
751
|
|
|
See example outputs from individual feature functions. |
752
|
|
|
|
753
|
|
|
""" |
754
|
|
|
|
755
|
|
|
# Skeleton of Trajectory features metadata table. |
756
|
|
|
# Builds entry for each unique Track ID. |
757
|
|
|
holder = dframe.Track_ID.unique().astype(float) |
758
|
|
|
die = {'Track_ID': holder, |
759
|
|
|
'alpha': holder, |
760
|
|
|
'D_fit': holder, |
761
|
|
|
'kurtosis': holder, |
762
|
|
|
'asymmetry1': holder, |
763
|
|
|
'asymmetry2': holder, |
764
|
|
|
'asymmetry3': holder, |
765
|
|
|
'AR': holder, |
766
|
|
|
'elongation': holder, |
767
|
|
|
'boundedness': holder, |
768
|
|
|
'fractal_dim': holder, |
769
|
|
|
'trappedness': holder, |
770
|
|
|
'efficiency': holder, |
771
|
|
|
'straightness': holder, |
772
|
|
|
'MSD_ratio': holder, |
773
|
|
|
'frames': holder, |
774
|
|
|
'X': holder, |
775
|
|
|
'Y': holder, |
776
|
|
|
'Quality': holder, |
777
|
|
|
'Mean_Intensity': holder, |
778
|
|
|
'SN_Ratio': holder, |
779
|
|
|
'Deff1': holder, |
780
|
|
|
'Deff2': holder} |
781
|
|
|
|
782
|
|
|
datai = pd.DataFrame(data=die) |
783
|
|
|
|
784
|
|
|
trackids = dframe.Track_ID.unique() |
785
|
|
|
partcount = trackids.shape[0] |
786
|
|
|
|
787
|
|
|
for particle in range(0, partcount): |
|
|
|
|
788
|
|
|
single_track_masked =\ |
789
|
|
|
dframe.loc[dframe['Track_ID'] == |
790
|
|
|
trackids[particle]].sort_values(['Track_ID', 'Frame'], |
791
|
|
|
ascending=[ |
792
|
|
|
1, |
|
|
|
|
793
|
|
|
1]).reset_index(drop=True) |
|
|
|
|
794
|
|
|
single_track = unmask_track(single_track_masked) |
795
|
|
|
(datai['alpha'][particle], |
796
|
|
|
datai['D_fit'][particle]) = alpha_calc(single_track) |
797
|
|
|
datai['kurtosis'][particle] = kurtosis(single_track) |
798
|
|
|
(eig1, eig2, datai['asymmetry1'][particle], |
799
|
|
|
datai['asymmetry2'][particle], |
800
|
|
|
datai['asymmetry3'][particle]) = asymmetry(single_track) |
801
|
|
|
(datai['AR'][particle], datai['elongation'][particle], |
802
|
|
|
(datai['X'][particle], |
803
|
|
|
datai['Y'][particle])) = aspectratio(single_track) |
804
|
|
|
(datai['boundedness'][particle], datai['fractal_dim'][particle], |
805
|
|
|
datai['trappedness'][particle]) = boundedness(single_track, framerate) |
806
|
|
|
(datai['efficiency'][particle], |
807
|
|
|
datai['straightness'][particle]) = efficiency(single_track) |
808
|
|
|
datai['frames'][particle] = single_track.shape[0] |
809
|
|
|
if single_track['Frame'][single_track.shape[0]-2] > 2: |
810
|
|
|
datai['MSD_ratio'][particle] = msd_ratio(single_track, 2, |
811
|
|
|
single_track['Frame'][ |
812
|
|
|
single_track.shape[0]-2]) |
|
|
|
|
813
|
|
|
else: |
814
|
|
|
datai['MSD_ratio'][particle] = np.nan |
815
|
|
|
|
816
|
|
|
try: |
817
|
|
|
datai['Deff1'][particle] = single_track['MSDs'][frame[0]] / (4*frame[0]) |
818
|
|
|
except: |
819
|
|
|
datai['Deff1'][particle] = np.nan |
820
|
|
|
|
821
|
|
|
try: |
822
|
|
|
datai['Deff2'][particle] = single_track['MSDs'][frame[1]] / (4*frame[1]) |
823
|
|
|
except: |
824
|
|
|
datai['Deff2'][particle] = np.nan |
825
|
|
|
|
826
|
|
|
datai['Mean_Intensity'][particle] = np.nanmean(single_track[ |
827
|
|
|
'Mean_Intensity'].replace([np.inf, -np.inf], np.nan).dropna(how="all").values) |
|
|
|
|
828
|
|
|
datai['Quality'][particle] = np.nanmean(single_track[ |
829
|
|
|
'Quality'].replace([np.inf, -np.inf], np.nan).dropna(how="all").values) |
|
|
|
|
830
|
|
|
datai['SN_Ratio'][particle] = np.nanmean(single_track[ |
831
|
|
|
'SN_Ratio'].replace([np.inf, -np.inf], np.nan).dropna(how="all").values) |
|
|
|
|
832
|
|
|
|
833
|
|
|
if mean_values: |
834
|
|
|
nonnum = ['Track_ID'] |
835
|
|
|
for col in datai.columns: |
836
|
|
|
if col not in nonnum: |
837
|
|
|
datai['Mean ' + col] = np.nan |
838
|
|
|
datai['Std ' + col] = np.nan |
839
|
|
|
|
840
|
|
|
for xrange in range(0, 16): |
841
|
|
|
for yrange in range(0, 16): |
842
|
|
|
bitesize = datai[(datai['X'] >= 128*xrange) & (datai['X'] < 128*(xrange+1)) & |
843
|
|
|
(datai['Y'] >= 128*yrange) & (datai['Y'] < 128*(yrange+1))] |
844
|
|
|
bitesize.replace([np.inf, -np.inf], np.nan) |
845
|
|
|
print(bitesize.shape) |
846
|
|
|
for col in bitesize.columns: |
847
|
|
|
if col not in nonnum and 'Mean' not in col and 'Std' not in col: |
848
|
|
|
datai['Mean '+ col][bitesize.index] = np.nanmean(bitesize[col]) |
849
|
|
|
datai['Std '+ col][bitesize.index] = np.nanstd(bitesize[col]) |
850
|
|
|
|
851
|
|
|
return datai |
852
|
|
|
|
853
|
|
|
|
854
|
|
View Code Duplication |
def feature_violin(tgroups, feature='boundedness', |
|
|
|
|
855
|
|
|
labels=['sample 1', 'sample 2', 'sample 3'], |
856
|
|
|
points=40, ylim=[0, 1], nticks=11): |
857
|
|
|
'''Plots violin plots of features in comparison groups |
858
|
|
|
|
859
|
|
|
Parameters |
860
|
|
|
---------- |
861
|
|
|
tgroups : dict of pandas.core.frames.DataFrame |
862
|
|
|
Dictionary containing pandas dataframes containing trajectory |
863
|
|
|
features of subgroups to be plotted |
864
|
|
|
feature : string |
865
|
|
|
Feature to be compared |
866
|
|
|
labels : list of strings |
867
|
|
|
Labels of subgroups to be plotted. |
868
|
|
|
points : int |
869
|
|
|
Determines resolution of violin plot |
870
|
|
|
ylim : list of int |
871
|
|
|
Y range of output plot |
872
|
|
|
|
873
|
|
|
''' |
874
|
|
|
|
875
|
|
|
majorticks = np.linspace(ylim[0], ylim[1], nticks) |
876
|
|
|
to_graph = [] |
877
|
|
|
pos = [] |
878
|
|
|
counter = 1 |
879
|
|
|
for key in tgroups: |
880
|
|
|
to_graph.append(tgroups[key][feature][tgroups[key][feature] < 10000].replace([np.inf, -np.inf], np.nan).dropna().values) |
|
|
|
|
881
|
|
|
pos.append(counter) |
882
|
|
|
counter = counter + 1 |
883
|
|
|
|
884
|
|
|
def set_axis_style(ax, labels): |
885
|
|
|
ax.get_xaxis().set_tick_params(direction='out') |
886
|
|
|
ax.xaxis.set_ticks_position('bottom') |
887
|
|
|
ax.set_xticks(np.arange(1, len(labels) + 1)) |
888
|
|
|
ax.set_xticklabels(labels) |
889
|
|
|
ax.set_xlim(0.25, len(labels) + 0.75) |
890
|
|
|
|
891
|
|
|
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(6, 6)) |
892
|
|
|
|
893
|
|
|
axes.violinplot(to_graph, pos, points=points, widths=0.9, |
894
|
|
|
showmeans=True, showextrema=False) |
895
|
|
|
set_axis_style(axes, labels) |
896
|
|
|
axes.tick_params(axis='both', which='major', |
897
|
|
|
labelsize=16) |
898
|
|
|
axes.set_ylim(ylim) |
899
|
|
|
axes.set_yticks(majorticks) |
900
|
|
|
|
901
|
|
|
plt.show() |
902
|
|
|
|