Conditions | 1 |
Total Lines | 54 |
Code Lines | 44 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | import sys |
||
79 | def BF_cell_features(prefix, folder, bucket='ccurtis.data'): |
||
80 | |||
81 | ffilename = 'features_{}.csv'.format(prefix) |
||
82 | mfilename = 'msd_{}.csv'.format(prefix) |
||
83 | bffilename = 'BF_cells_{}.tif'.format(prefix) |
||
84 | biim = 'bi_BF_cells_{}.tif'.format(prefix) |
||
85 | bimages = 'biproc_BF_cells_{}.png'.format(prefix) |
||
86 | |||
87 | aws.download_s3('{}/{}'.format(folder, ffilename), ffilename, bucket_name=bucket) |
||
88 | aws.download_s3('{}/{}'.format(folder, mfilename), mfilename, bucket_name=bucket) |
||
89 | aws.download_s3('{}/{}'.format(folder, bffilename), bffilename, bucket_name=bucket) |
||
90 | print('Successfully downloaded files') |
||
91 | |||
92 | fstats = pd.read_csv(ffilename, encoding = "ISO-8859-1") |
||
93 | msds = pd.read_csv(mfilename, encoding = "ISO-8859-1") |
||
94 | bfimage = plt.imread(bffilename) |
||
95 | tophimage = binary_BF(bfimage, opense=disk(12), bi_thresh=1.2, tophatse=disk(20)) |
||
96 | plt.savefig(bimages) |
||
97 | euimage = EuclideanTransform(tophimage)+EuclideanTransform(~tophimage) |
||
98 | print('Successfully performed image processing') |
||
99 | |||
100 | xa = -np.reshape(np.clip((fstats.Y.values-1).astype(int), a_min=0, a_max=2043), newshape=(fstats.Y.shape[0], 1)) |
||
101 | ya = np.reshape(np.clip((fstats.X.values-1).astype(int), a_min=0, a_max=2043), newshape=(fstats.X.shape[0], 1)) |
||
102 | xya = [tuple(l) for l in np.concatenate((xa, ya), axis=1).tolist()] |
||
103 | fstats['Cell Status'] = itemgetter(*xya)(tophimage) |
||
104 | fstats['Cell Distance'] = itemgetter(*xya)(euimage) |
||
105 | |||
106 | print('Successfully calculated Cell Status Params') |
||
107 | |||
108 | frames = 651 |
||
109 | xb = -np.reshape(np.clip((msds.Y.values-1).astype(int), a_min=0, a_max=2043), newshape=(int(msds.Y.shape[0]), 1)) |
||
110 | yb = np.reshape(np.clip((msds.X.values-1).astype(int), a_min=0, a_max=2043), newshape=(int(msds.X.shape[0]), 1)) |
||
111 | xyb = [tuple(l) for l in np.concatenate((xb, yb), axis=1).tolist()] |
||
112 | msds['Cell Status'] = itemgetter(*xyb)(tophimage) |
||
113 | msds['Cell Distance'] = itemgetter(*xyb)(euimage) |
||
114 | |||
115 | msds_cell_status = np.reshape(msds['Cell Status'].values, newshape=(int(msds.X.shape[0]/frames), frames)) |
||
116 | msds_cell_distance = np.reshape(msds['Cell Distance'].values, newshape=(int(msds.X.shape[0]/frames), frames)) |
||
117 | fstats['Membrane Xing'] = np.sum(np.diff(msds_cell_status, axis=1) == True, axis=1) |
||
118 | fstats['Distance Towards Cell'] = np.sum(np.diff(msds_cell_distance, axis=1), axis=1) |
||
119 | fstats['Percent Towards Cell'] = np.mean(np.diff(msds_cell_distance, axis=1) > 0, axis=1) |
||
120 | print('Successfully calculated Membrane Xing Params') |
||
121 | |||
122 | fstats.to_csv(ffilename, sep=',', encoding = "ISO-8859-1") |
||
123 | msds.to_csv(mfilename, sep=',', encoding = "ISO-8859-1") |
||
124 | plt.imsave(biim, tophimage, cmap='gray') |
||
125 | |||
126 | aws.upload_s3(ffilename, '{}/{}'.format(folder, ffilename), bucket_name=bucket) |
||
127 | aws.upload_s3(mfilename, '{}/{}'.format(folder, mfilename), bucket_name=bucket) |
||
128 | aws.upload_s3(biim, '{}/{}'.format(folder, biim), bucket_name=bucket) |
||
129 | aws.upload_s3(bimages, '{}/{}'.format(folder, bimages, bucket_name=bucket)) |
||
130 | print('Successfully uploaded files') |
||
131 | |||
132 | return fstats |
||
133 | |||
139 |