1
|
|
|
"""Functions to calculate mean squared displacements from trajectory data |
2
|
|
|
|
3
|
|
|
This module includes functions to calculate mean squared displacements and |
4
|
|
|
additional measures from input trajectory datasets as calculated by the |
5
|
|
|
Trackmate ImageJ plugin. |
6
|
|
|
|
7
|
|
|
""" |
8
|
|
|
import warnings |
9
|
|
|
import random as rand |
10
|
|
|
|
11
|
|
|
import pandas as pd |
12
|
|
|
import numpy as np |
13
|
|
|
import numpy.ma as ma |
14
|
|
|
import scipy.stats as stats |
15
|
|
|
from scipy import interpolate |
16
|
|
|
import matplotlib.pyplot as plt |
17
|
|
|
from matplotlib.pyplot import cm |
18
|
|
|
import diff_classifier.aws as aws |
19
|
|
|
|
20
|
|
|
|
21
|
|
View Code Duplication |
def nth_diff(dataframe, n=1, axis=0): |
|
|
|
|
22
|
|
|
"""Calculates the nth difference between vector elements |
23
|
|
|
|
24
|
|
|
Returns a new vector of size N - n containing the nth difference between |
25
|
|
|
vector elements. |
26
|
|
|
|
27
|
|
|
Parameters |
28
|
|
|
---------- |
29
|
|
|
dataframe : pandas.core.series.Series of int or float |
30
|
|
|
Input data on which differences are to be calculated. |
31
|
|
|
n : int |
32
|
|
|
Function calculated xpos(i) - xpos(i - n) for all values in pandas |
33
|
|
|
series. |
34
|
|
|
axis : {0, 1} |
35
|
|
|
Axis along which differences are to be calculated. Default is 0. If 0, |
36
|
|
|
input must be a pandas series. If 1, input must be a numpy array. |
37
|
|
|
|
38
|
|
|
Returns |
39
|
|
|
------- |
40
|
|
|
diff : pandas.core.series.Series of int or float |
41
|
|
|
Pandas series of size N - n, where N is the original size of dataframe. |
42
|
|
|
|
43
|
|
|
Examples |
44
|
|
|
-------- |
45
|
|
|
>>> df = np.ones((5, 10)) |
46
|
|
|
>>> nth_diff(df) |
47
|
|
|
array([[0., 0., 0., 0., 0., 0., 0., 0., 0.], |
48
|
|
|
[0., 0., 0., 0., 0., 0., 0., 0., 0.], |
49
|
|
|
[0., 0., 0., 0., 0., 0., 0., 0., 0.], |
50
|
|
|
[0., 0., 0., 0., 0., 0., 0., 0., 0.], |
51
|
|
|
[0., 0., 0., 0., 0., 0., 0., 0., 0.]]) |
52
|
|
|
|
53
|
|
|
>>> df = np.ones((5, 10)) |
54
|
|
|
>>> nth_diff (df) |
55
|
|
|
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], |
56
|
|
|
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], |
57
|
|
|
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], |
58
|
|
|
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]) |
59
|
|
|
|
60
|
|
|
""" |
61
|
|
|
|
62
|
|
|
assert isinstance(n, int), "n must be an integer." |
63
|
|
|
|
64
|
|
|
if dataframe.ndim == 1: |
65
|
|
|
length = dataframe.shape[0] |
66
|
|
|
if n <= length: |
67
|
|
|
test1 = dataframe[:-n].reset_index(drop=True) |
68
|
|
|
test2 = dataframe[n:].reset_index(drop=True) |
69
|
|
|
diff = test2 - test1 |
70
|
|
|
else: |
71
|
|
|
diff = np.array([np.nan, np.nan]) |
72
|
|
|
else: |
73
|
|
|
length = dataframe.shape[0] |
74
|
|
|
if n <= length: |
75
|
|
|
if axis == 0: |
76
|
|
|
test1 = dataframe[:-n, :] |
77
|
|
|
test2 = dataframe[n:, :] |
78
|
|
|
else: |
79
|
|
|
test1 = dataframe[:, :-n] |
80
|
|
|
test2 = dataframe[:, n:] |
81
|
|
|
diff = test2 - test1 |
82
|
|
|
else: |
83
|
|
|
diff = np.array([np.nan, np.nan]) |
84
|
|
|
|
85
|
|
|
return diff |
86
|
|
|
|
87
|
|
|
|
88
|
|
View Code Duplication |
def msd_calc(track, length=10): |
|
|
|
|
89
|
|
|
"""Calculates mean squared displacement of input track. |
90
|
|
|
|
91
|
|
|
Returns numpy array containing MSD data calculated from an individual track. |
92
|
|
|
|
93
|
|
|
Parameters |
94
|
|
|
---------- |
95
|
|
|
track : pandas.core.frame.DataFrame |
96
|
|
|
Contains, at a minimum a 'Frame', 'X', and 'Y' column |
97
|
|
|
|
98
|
|
|
Returns |
99
|
|
|
------- |
100
|
|
|
new_track : pandas.core.frame.DataFrame |
101
|
|
|
Similar to input track. All missing frames of individual trajectories |
102
|
|
|
are filled in with NaNs, and two new columns, MSDs and Gauss are added: |
103
|
|
|
MSDs, calculated mean squared displacements using the formula |
104
|
|
|
MSD = <(xpos-x0)**2> |
105
|
|
|
Gauss, calculated Gaussianity |
106
|
|
|
|
107
|
|
|
Examples |
108
|
|
|
-------- |
109
|
|
|
>>> data1 = {'Frame': [1, 2, 3, 4, 5], |
110
|
|
|
... 'X': [5, 6, 7, 8, 9], |
111
|
|
|
... 'Y': [6, 7, 8, 9, 10]} |
112
|
|
|
>>> df = pd.DataFrame(data=data1) |
113
|
|
|
>>> new_track = msd.msd_calc(df, 5) |
114
|
|
|
|
115
|
|
|
>>> data1 = {'Frame': [1, 2, 3, 4, 5], |
116
|
|
|
... 'X': [5, 6, 7, 8, 9], |
117
|
|
|
... 'Y': [6, 7, 8, 9, 10]} |
118
|
|
|
>>> df = pd.DataFrame(data=data1) |
119
|
|
|
>>> new_track = msd.msd_calc(df) |
120
|
|
|
|
121
|
|
|
""" |
122
|
|
|
|
123
|
|
|
meansd = np.zeros(length) |
124
|
|
|
gauss = np.zeros(length) |
125
|
|
|
new_frame = np.linspace(1, length, length) |
126
|
|
|
old_frame = track['Frame'] |
127
|
|
|
oldxy = [track['X'], track['Y']] |
128
|
|
|
fxy = [interpolate.interp1d(old_frame, oldxy[0], bounds_error=False, |
129
|
|
|
fill_value=np.nan), |
130
|
|
|
interpolate.interp1d(old_frame, oldxy[1], bounds_error=False, |
131
|
|
|
fill_value=np.nan)] |
132
|
|
|
|
133
|
|
|
intxy = [ma.masked_equal(fxy[0](new_frame), np.nan), |
134
|
|
|
ma.masked_equal(fxy[1](new_frame), np.nan)] |
135
|
|
|
data1 = {'Frame': new_frame, |
136
|
|
|
'X': intxy[0], |
137
|
|
|
'Y': intxy[1] |
138
|
|
|
} |
|
|
|
|
139
|
|
|
new_track = pd.DataFrame(data=data1) |
140
|
|
|
|
141
|
|
|
for frame in range(0, length-1): |
|
|
|
|
142
|
|
|
xy = [np.square(nth_diff(new_track['X'], n=frame+1)), |
143
|
|
|
np.square(nth_diff(new_track['Y'], n=frame+1))] |
144
|
|
|
with warnings.catch_warnings(): |
145
|
|
|
warnings.simplefilter("ignore", category=RuntimeWarning) |
146
|
|
|
meansd[frame+1] = np.nanmean(xy[0] + xy[1]) |
147
|
|
|
gauss[frame+1] = np.nanmean(xy[0]**2 + xy[1]**2 |
148
|
|
|
)/(2*(meansd[frame+1]**2)) |
|
|
|
|
149
|
|
|
|
150
|
|
|
new_track['MSDs'] = pd.Series(meansd, index=new_track.index) |
151
|
|
|
new_track['Gauss'] = pd.Series(gauss, index=new_track.index) |
152
|
|
|
|
153
|
|
|
return new_track |
154
|
|
|
|
155
|
|
|
|
156
|
|
View Code Duplication |
def all_msds(data): |
|
|
|
|
157
|
|
|
"""Calculates mean squared displacements of a trajectory dataset |
158
|
|
|
|
159
|
|
|
Returns numpy array containing MSD data of all tracks in a trajectory |
160
|
|
|
pandas dataframe. |
161
|
|
|
|
162
|
|
|
Parameters |
163
|
|
|
---------- |
164
|
|
|
data : pandas.core.frame.DataFrame |
165
|
|
|
Contains, at a minimum a 'Frame', 'Track_ID', 'X', and |
166
|
|
|
'Y' column. Note: it is assumed that frames begins at 1, not 0 with this |
167
|
|
|
function. Adjust before feeding into function. |
168
|
|
|
|
169
|
|
|
Returns |
170
|
|
|
------- |
171
|
|
|
new_data : pandas.core.frame.DataFrame |
172
|
|
|
Similar to input data. All missing frames of individual trajectories |
173
|
|
|
are filled in with NaNs, and two new columns, MSDs and Gauss are added: |
174
|
|
|
MSDs, calculated mean squared displacements using the formula |
175
|
|
|
MSD = <(xpos-x0)**2> |
176
|
|
|
Gauss, calculated Gaussianity |
177
|
|
|
|
178
|
|
|
Examples |
179
|
|
|
-------- |
180
|
|
|
>>> data1 = {'Frame': [1, 2, 3, 4, 5, 1, 2, 3, 4, 5], |
181
|
|
|
... 'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], |
182
|
|
|
... 'X': [5, 6, 7, 8, 9, 1, 2, 3, 4, 5], |
183
|
|
|
... 'Y': [6, 7, 8, 9, 10, 2, 3, 4, 5, 6]} |
184
|
|
|
>>> df = pd.DataFrame(data=data1) |
185
|
|
|
>>> all_msds(df) |
186
|
|
|
|
187
|
|
|
""" |
188
|
|
|
|
189
|
|
|
trackids = data.Track_ID.unique() |
190
|
|
|
partcount = trackids.shape[0] |
191
|
|
|
length = int(max(data['Frame'])) |
192
|
|
|
new = {} |
193
|
|
|
new['length'] = partcount*length |
194
|
|
|
new['frame'] = np.zeros(new['length']) |
195
|
|
|
new['ID'] = np.zeros(new['length']) |
196
|
|
|
new['xy'] = [np.zeros(new['length']), |
197
|
|
|
np.zeros(new['length'])] |
198
|
|
|
meansd = np.zeros(new['length']) |
199
|
|
|
gauss = np.zeros(new['length']) |
200
|
|
|
|
201
|
|
|
for particle in range(0, partcount): |
|
|
|
|
202
|
|
|
single_track = data.loc[data['Track_ID'] == |
203
|
|
|
trackids[particle] |
204
|
|
|
].sort_values(['Track_ID', 'Frame'], |
|
|
|
|
205
|
|
|
ascending=[1, 1] |
206
|
|
|
).reset_index(drop=True) |
|
|
|
|
207
|
|
|
if particle == 0: |
208
|
|
|
index1 = 0 |
209
|
|
|
index2 = length |
210
|
|
|
else: |
211
|
|
|
index1 = index2 |
|
|
|
|
212
|
|
|
index2 = index2 + length |
213
|
|
|
new['single_track'] = msd_calc(single_track, length=length) |
214
|
|
|
new['frame'][index1:index2] = np.linspace(1, length, length) |
215
|
|
|
new['ID'][index1:index2] = particle+1 |
216
|
|
|
new['xy'][0][index1:index2] = new['single_track']['X'] |
217
|
|
|
new['xy'][1][index1:index2] = new['single_track']['Y'] |
218
|
|
|
meansd[index1:index2] = new['single_track']['MSDs'] |
219
|
|
|
gauss[index1:index2] = new['single_track']['Gauss'] |
220
|
|
|
|
221
|
|
|
data1 = {'Frame': new['frame'], |
222
|
|
|
'Track_ID': new['ID'], |
223
|
|
|
'X': new['xy'][0], |
224
|
|
|
'Y': new['xy'][1], |
225
|
|
|
'MSDs': meansd, |
226
|
|
|
'Gauss': gauss} |
227
|
|
|
new_data = pd.DataFrame(data=data1) |
228
|
|
|
|
229
|
|
|
return new_data |
230
|
|
|
|
231
|
|
|
|
232
|
|
View Code Duplication |
def make_xyarray(data, length=651): |
|
|
|
|
233
|
|
|
"""Rearranges xy position data into 2d arrays |
234
|
|
|
|
235
|
|
|
Rearranges xy data from input pandas dataframe into 2D numpy array. |
236
|
|
|
|
237
|
|
|
Parameters |
238
|
|
|
---------- |
239
|
|
|
data : pd.core.frame.DataFrame |
240
|
|
|
Contains, at a minimum a 'Frame', 'Track_ID', 'X', and |
241
|
|
|
'Y' column. |
242
|
|
|
length : int |
243
|
|
|
Desired length or number of frames to which to extend trajectories. |
244
|
|
|
Any trajectories shorter than the input length will have the extra space |
245
|
|
|
filled in with NaNs. |
246
|
|
|
|
247
|
|
|
Returns |
248
|
|
|
------- |
249
|
|
|
xyft : dict of np.ndarray |
250
|
|
|
Dictionary containing xy position data, frame data, and trajectory ID |
251
|
|
|
data. Contains the following keys: |
252
|
|
|
farray, frames data (length x particles) |
253
|
|
|
tarray, trajectory ID data (length x particles) |
254
|
|
|
xarray, x position data (length x particles) |
255
|
|
|
yarray, y position data (length x particles) |
256
|
|
|
|
257
|
|
|
Examples |
258
|
|
|
-------- |
259
|
|
|
>>> data1 = {'Frame': [0, 1, 2, 3, 4, 2, 3, 4, 5, 6], |
260
|
|
|
... 'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], |
261
|
|
|
... 'X': [5, 6, 7, 8, 9, 1, 2, 3, 4, 5], |
262
|
|
|
... 'Y': [6, 7, 8, 9, 10, 2, 3, 4, 5, 6]} |
263
|
|
|
>>> df = pd.DataFrame(data=data1) |
264
|
|
|
>>> length = max(df['Frame']) + 1 |
265
|
|
|
>>> xyft = msd.make_xyarray(df, length=length) |
266
|
|
|
{'farray': array([[0., 0.], |
267
|
|
|
[1., 1.], |
268
|
|
|
[2., 2.], |
269
|
|
|
[3., 3.], |
270
|
|
|
[4., 4.], |
271
|
|
|
[5., 5.], |
272
|
|
|
[6., 6.]]), |
273
|
|
|
'tarray': array([[1., 2.], |
274
|
|
|
[1., 2.], |
275
|
|
|
[1., 2.], |
276
|
|
|
[1., 2.], |
277
|
|
|
[1., 2.], |
278
|
|
|
[1., 2.], |
279
|
|
|
[1., 2.]]), |
280
|
|
|
'xarray': array([[ 5., nan], |
281
|
|
|
[ 6., nan], |
282
|
|
|
[ 7., 1.], |
283
|
|
|
[ 8., 2.], |
284
|
|
|
[ 9., 3.], |
285
|
|
|
[nan, 4.], |
286
|
|
|
'yarray': [nan, 5.]]), |
287
|
|
|
array([[ 6., nan], |
288
|
|
|
[ 7., nan], |
289
|
|
|
[ 8., 2.], |
290
|
|
|
[ 9., 3.], |
291
|
|
|
[10., 4.], |
292
|
|
|
[nan, 5.], |
293
|
|
|
[nan, 6.]])} |
294
|
|
|
|
295
|
|
|
""" |
296
|
|
|
|
297
|
|
|
# Initial values |
298
|
|
|
first_p = int(min(data['Track_ID'])) |
299
|
|
|
particles = int(max(data['Track_ID'])) - first_p + 1 |
300
|
|
|
xyft = {} |
301
|
|
|
xyft['xarray'] = np.zeros((length, particles)) |
302
|
|
|
xyft['yarray'] = np.zeros((length, particles)) |
303
|
|
|
xyft['farray'] = np.zeros((length, particles)) |
304
|
|
|
xyft['tarray'] = np.zeros((length, particles)) |
305
|
|
|
xyft['qarray'] = np.zeros((length, particles)) |
306
|
|
|
xyft['snarray'] = np.zeros((length, particles)) |
307
|
|
|
xyft['iarray'] = np.zeros((length, particles)) |
308
|
|
|
|
309
|
|
|
track = data[data['Track_ID'] == first_p |
310
|
|
|
].sort_values(['Track_ID', 'Frame'], |
|
|
|
|
311
|
|
|
ascending=[1, 1]).reset_index(drop=True) |
312
|
|
|
new_frame = np.linspace(0, length-1, length) |
313
|
|
|
|
314
|
|
|
old_frame = track['Frame'].values.astype(float) |
315
|
|
|
oldxy = [track['X'].values, |
316
|
|
|
track['Y'].values, |
317
|
|
|
track['Quality'].values, |
318
|
|
|
track['SN_Ratio'].values, |
319
|
|
|
track['Mean_Intensity'].values] |
320
|
|
|
fxy = [interpolate.interp1d(old_frame, oldxy[0], bounds_error=False, |
321
|
|
|
fill_value=np.nan), |
322
|
|
|
interpolate.interp1d(old_frame, oldxy[1], bounds_error=False, |
323
|
|
|
fill_value=np.nan), |
324
|
|
|
interpolate.interp1d(old_frame, oldxy[2], bounds_error=False, |
325
|
|
|
fill_value=np.nan), |
326
|
|
|
interpolate.interp1d(old_frame, oldxy[3], bounds_error=False, |
327
|
|
|
fill_value=np.nan), |
328
|
|
|
interpolate.interp1d(old_frame, oldxy[4], bounds_error=False, |
329
|
|
|
fill_value=np.nan)] |
330
|
|
|
|
331
|
|
|
intxy = [fxy[0](new_frame), fxy[1](new_frame), fxy[2](new_frame), |
332
|
|
|
fxy[3](new_frame), fxy[4](new_frame)] |
333
|
|
|
|
334
|
|
|
# Fill in entire array |
335
|
|
|
xyft['xarray'][:, 0] = intxy[0] |
336
|
|
|
xyft['yarray'][:, 0] = intxy[1] |
337
|
|
|
xyft['farray'][:, 0] = new_frame |
338
|
|
|
xyft['tarray'][:, 0] = first_p |
339
|
|
|
xyft['qarray'][:, 0] = intxy[2] |
340
|
|
|
xyft['snarray'][:, 0] = intxy[3] |
341
|
|
|
xyft['iarray'][:, 0] = intxy[4] |
342
|
|
|
|
343
|
|
|
for part in range(first_p+1, first_p+particles): |
|
|
|
|
344
|
|
|
track = data[data['Track_ID'] == part |
345
|
|
|
].sort_values(['Track_ID', 'Frame'], |
|
|
|
|
346
|
|
|
ascending=[1, 1]).reset_index(drop=True) |
347
|
|
|
|
348
|
|
|
old_frame = track['Frame'] |
349
|
|
|
oldxy = [track['X'].values, |
350
|
|
|
track['Y'].values, |
351
|
|
|
track['Quality'].values, |
352
|
|
|
track['SN_Ratio'].values, |
353
|
|
|
track['Mean_Intensity'].values] |
354
|
|
|
|
355
|
|
|
fxy = [interpolate.interp1d(old_frame, oldxy[0], bounds_error=False, |
356
|
|
|
fill_value=np.nan), |
357
|
|
|
interpolate.interp1d(old_frame, oldxy[1], bounds_error=False, |
358
|
|
|
fill_value=np.nan), |
359
|
|
|
interpolate.interp1d(old_frame, oldxy[2], bounds_error=False, |
360
|
|
|
fill_value=np.nan), |
361
|
|
|
interpolate.interp1d(old_frame, oldxy[3], bounds_error=False, |
362
|
|
|
fill_value=np.nan), |
363
|
|
|
interpolate.interp1d(old_frame, oldxy[4], bounds_error=False, |
364
|
|
|
fill_value=np.nan)] |
365
|
|
|
|
366
|
|
|
intxy = [fxy[0](new_frame), fxy[1](new_frame), fxy[2](new_frame), |
367
|
|
|
fxy[3](new_frame), fxy[4](new_frame)] |
368
|
|
|
|
369
|
|
|
xyft['xarray'][:, part-first_p] = intxy[0] |
370
|
|
|
xyft['yarray'][:, part-first_p] = intxy[1] |
371
|
|
|
xyft['farray'][:, part-first_p] = new_frame |
372
|
|
|
xyft['tarray'][:, part-first_p] = part |
373
|
|
|
xyft['qarray'][:, part-first_p] = intxy[2] |
374
|
|
|
xyft['snarray'][:, part-first_p] = intxy[3] |
375
|
|
|
xyft['iarray'][:, part-first_p] = intxy[4] |
376
|
|
|
|
377
|
|
|
return xyft |
378
|
|
|
|
379
|
|
|
|
380
|
|
View Code Duplication |
def all_msds2(data, frames=651): |
|
|
|
|
381
|
|
|
"""Calculates mean squared displacements of input trajectory dataset |
382
|
|
|
|
383
|
|
|
Returns numpy array containing MSD data of all tracks in a trajectory pandas |
384
|
|
|
dataframe. |
385
|
|
|
|
386
|
|
|
Parameters |
387
|
|
|
---------- |
388
|
|
|
data : pandas.core.frame.DataFrame |
389
|
|
|
Contains, at a minimum a 'Frame', 'Track_ID', 'X', and |
390
|
|
|
'Y' column. Note: it is assumed that frames begins at 0. |
391
|
|
|
|
392
|
|
|
Returns |
393
|
|
|
------- |
394
|
|
|
new_data : pandas.core.frame.DataFrame |
395
|
|
|
Similar to input data. All missing frames of individual trajectories |
396
|
|
|
are filled in with NaNs, and two new columns, MSDs and Gauss are added: |
397
|
|
|
MSDs, calculated mean squared displacements using the formula |
398
|
|
|
MSD = <(xpos-x0)**2> |
399
|
|
|
Gauss, calculated Gaussianity |
400
|
|
|
|
401
|
|
|
Examples |
402
|
|
|
-------- |
403
|
|
|
>>> data1 = {'Frame': [0, 1, 2, 3, 4, 0, 1, 2, 3, 4], |
404
|
|
|
... 'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], |
405
|
|
|
... 'X': [5, 6, 7, 8, 9, 1, 2, 3, 4, 5], |
406
|
|
|
... 'Y': [6, 7, 8, 9, 10, 2, 3, 4, 5, 6]} |
407
|
|
|
>>> df = pd.DataFrame(data=data1) |
408
|
|
|
>>> cols = ['Frame', 'Track_ID', 'X', 'Y', 'MSDs', 'Gauss'] |
409
|
|
|
>>> om flength = max(df['Frame']) + 1 |
410
|
|
|
>>> msd.all_msds2(df, frames=length)[cols] |
411
|
|
|
|
412
|
|
|
""" |
413
|
|
|
if data.shape[0] > 2: |
414
|
|
|
try: |
415
|
|
|
xyft = make_xyarray(data, length=frames) |
416
|
|
|
length = xyft['xarray'].shape[0] |
417
|
|
|
particles = xyft['xarray'].shape[1] |
418
|
|
|
|
419
|
|
|
meansd = np.zeros((length, particles)) |
420
|
|
|
gauss = np.zeros((length, particles)) |
421
|
|
|
|
422
|
|
|
for frame in range(0, length-1): |
|
|
|
|
423
|
|
|
xpos = np.square(nth_diff(xyft['xarray'], n=frame+1)) |
424
|
|
|
ypos = np.square(nth_diff(xyft['yarray'], n=frame+1)) |
425
|
|
|
|
426
|
|
|
with warnings.catch_warnings(): |
427
|
|
|
warnings.simplefilter("ignore", category=RuntimeWarning) |
428
|
|
|
meansd[frame+1, :] = np.nanmean(xpos + ypos, axis=0) |
429
|
|
|
gauss[frame+1, :] = np.nanmean(xpos**2 + ypos**2, axis=0 |
430
|
|
|
)/(2*(meansd[frame+1]**2)) |
|
|
|
|
431
|
|
|
|
432
|
|
|
data1 = {'Frame': xyft['farray'].flatten('F'), |
433
|
|
|
'Track_ID': xyft['tarray'].flatten('F'), |
434
|
|
|
'X': xyft['xarray'].flatten('F'), |
435
|
|
|
'Y': xyft['yarray'].flatten('F'), |
436
|
|
|
'MSDs': meansd.flatten('F'), |
437
|
|
|
'Gauss': gauss.flatten('F'), |
438
|
|
|
'Quality': xyft['qarray'].flatten('F'), |
439
|
|
|
'SN_Ratio': xyft['snarray'].flatten('F'), |
440
|
|
|
'Mean_Intensity': xyft['iarray'].flatten('F')} |
441
|
|
|
|
442
|
|
|
new_data = pd.DataFrame(data=data1) |
443
|
|
|
except ValueError: |
444
|
|
|
data1 = {'Frame': [], |
445
|
|
|
'Track_ID': [], |
446
|
|
|
'X': [], |
447
|
|
|
'Y': [], |
448
|
|
|
'MSDs': [], |
449
|
|
|
'Gauss': [], |
450
|
|
|
'Quality': [], |
451
|
|
|
'SN_Ratio': [], |
452
|
|
|
'Mean_Intensity': []} |
453
|
|
|
new_data = pd.DataFrame(data=data1) |
454
|
|
|
except IndexError: |
455
|
|
|
data1 = {'Frame': [], |
456
|
|
|
'Track_ID': [], |
457
|
|
|
'X': [], |
458
|
|
|
'Y': [], |
459
|
|
|
'MSDs': [], |
460
|
|
|
'Gauss': [], |
461
|
|
|
'Quality': [], |
462
|
|
|
'SN_Ratio': [], |
463
|
|
|
'Mean_Intensity': []} |
464
|
|
|
new_data = pd.DataFrame(data=data1) |
465
|
|
|
else: |
466
|
|
|
data1 = {'Frame': [], |
467
|
|
|
'Track_ID': [], |
468
|
|
|
'X': [], |
469
|
|
|
'Y': [], |
470
|
|
|
'MSDs': [], |
471
|
|
|
'Gauss': [], |
472
|
|
|
'Quality': [], |
473
|
|
|
'SN_Ratio': [], |
474
|
|
|
'Mean_Intensity': []} |
475
|
|
|
new_data = pd.DataFrame(data=data1) |
476
|
|
|
|
477
|
|
|
return new_data |
478
|
|
|
|
479
|
|
|
|
480
|
|
View Code Duplication |
def geomean_msdisp(prefix, umppx=0.16, fps=100.02, upload=True, |
|
|
|
|
481
|
|
|
remote_folder="01_18_Experiment", bucket='ccurtis.data', |
482
|
|
|
backup_frames=651): |
483
|
|
|
"""Comptes geometric averages of mean squared displacement datasets |
484
|
|
|
|
485
|
|
|
Calculates geometric averages and stadard errors for MSD datasets. Might |
486
|
|
|
error out if not formatted as output from all_msds2. |
487
|
|
|
|
488
|
|
|
Parameters |
489
|
|
|
---------- |
490
|
|
|
prefix : string |
491
|
|
|
Prefix of file name to be plotted e.g. features_P1.csv prefix is P1. |
492
|
|
|
umppx : float |
493
|
|
|
Microns per pixel of original images. |
494
|
|
|
fps : float |
495
|
|
|
Frames per second of video. |
496
|
|
|
upload : bool |
497
|
|
|
True if you want to upload to s3. |
498
|
|
|
remote_folder : string |
499
|
|
|
Folder in S3 bucket to upload to. |
500
|
|
|
bucket : string |
501
|
|
|
Name of S3 bucket to upload to. |
502
|
|
|
|
503
|
|
|
Returns |
504
|
|
|
------- |
505
|
|
|
geo_mean : numpy.ndarray |
506
|
|
|
Geometric mean of trajectory MSDs at all time points. |
507
|
|
|
geo_stder : numpy.ndarray |
508
|
|
|
Geometric standard errot of trajectory MSDs at all time points. |
509
|
|
|
|
510
|
|
|
""" |
511
|
|
|
|
512
|
|
|
merged = pd.read_csv('msd_{}.csv'.format(prefix)) |
513
|
|
|
try: |
514
|
|
|
particles = int(max(merged['Track_ID'])) |
515
|
|
|
frames = int(max(merged['Frame'])) |
516
|
|
|
ypos = np.zeros((particles+1, frames+1)) |
517
|
|
|
|
518
|
|
|
for i in range(0, particles+1): |
|
|
|
|
519
|
|
|
ypos[i, :] = merged.loc[merged.Track_ID == i, 'MSDs']*umppx*umppx |
520
|
|
|
xpos = merged.loc[merged.Track_ID == i, 'Frame']/fps |
521
|
|
|
|
522
|
|
|
geo_mean = np.nanmean(ma.log(ypos), axis=0) |
523
|
|
|
geo_stder = ma.masked_equal(stats.sem(ma.log(ypos), axis=0, |
524
|
|
|
nan_policy='omit'), 0.0) |
525
|
|
|
|
526
|
|
|
except ValueError: |
527
|
|
|
geo_mean = np.nan*np.ones(backup_frames) |
528
|
|
|
geo_stder = np.nan*np.ones(backup_frames) |
529
|
|
|
|
530
|
|
|
np.savetxt('geomean_{}.csv'.format(prefix), geo_mean, delimiter=",") |
531
|
|
|
np.savetxt('geoSEM_{}.csv'.format(prefix), geo_stder, delimiter=",") |
532
|
|
|
|
533
|
|
|
if upload: |
534
|
|
|
aws.upload_s3('geomean_{}.csv'.format(prefix), |
535
|
|
|
remote_folder+'/'+'geomean_{}.csv'.format(prefix), |
536
|
|
|
bucket_name=bucket) |
537
|
|
|
aws.upload_s3('geoSEM_{}.csv'.format(prefix), |
538
|
|
|
remote_folder+'/'+'geoSEM_{}.csv'.format(prefix), |
539
|
|
|
bucket_name=bucket) |
540
|
|
|
|
541
|
|
|
return geo_mean, geo_stder |
542
|
|
|
|
543
|
|
|
|
544
|
|
View Code Duplication |
def binning(experiments, wells=4, prefix='test'): |
|
|
|
|
545
|
|
|
"""Split set of input experiments into groups. |
546
|
|
|
|
547
|
|
|
Parameters |
548
|
|
|
---------- |
549
|
|
|
experiments : list of str |
550
|
|
|
List of experiment names. |
551
|
|
|
wells : int |
552
|
|
|
Number of groups to divide experiments into. |
553
|
|
|
|
554
|
|
|
Returns |
555
|
|
|
------- |
556
|
|
|
slices : int |
557
|
|
|
Number of experiments per group. |
558
|
|
|
bins : dict of list of str |
559
|
|
|
Dictionary, keys corresponding to group names, and elements containing |
560
|
|
|
lists of experiments in each group. |
561
|
|
|
bin_names : list of str |
562
|
|
|
List of group names |
563
|
|
|
|
564
|
|
|
""" |
565
|
|
|
|
566
|
|
|
total_videos = len(experiments) |
567
|
|
|
bins = {} |
568
|
|
|
slices = int(total_videos/wells) |
569
|
|
|
bin_names = [] |
570
|
|
|
|
571
|
|
|
for num in range(0, wells): |
|
|
|
|
572
|
|
|
slice1 = num*slices |
573
|
|
|
slice2 = (num+1)*(slices) |
574
|
|
|
pref = '{}_W{}'.format(prefix, num) |
575
|
|
|
bins[pref] = experiments[slice1:slice2] |
576
|
|
|
bin_names.append(pref) |
577
|
|
|
return slices, bins, bin_names |
578
|
|
|
|
579
|
|
|
|
580
|
|
View Code Duplication |
def precision_weight(group, geo_stder): |
|
|
|
|
581
|
|
|
"""Calculates precision-based weights from input standard error data |
582
|
|
|
|
583
|
|
|
Calculates precision weights to be used in precision-averaged MSD |
584
|
|
|
calculations. |
585
|
|
|
|
586
|
|
|
Parameters |
587
|
|
|
---------- |
588
|
|
|
group : list of str |
589
|
|
|
List of experiment names to average. Each element corresponds to a key |
590
|
|
|
in geo_stder and geomean. |
591
|
|
|
geo_stder : dict of numpy.ndarray |
592
|
|
|
Each entry in dictionary corresponds to the standard errors of an MSD |
593
|
|
|
profile, the key corresponding to an experiment name. |
594
|
|
|
|
595
|
|
|
Returns |
596
|
|
|
------- |
597
|
|
|
weights: numpy.ndarray |
598
|
|
|
Precision weights to be used in precision averaging. |
599
|
|
|
w_holder : numpy.ndarray |
600
|
|
|
Precision values of each video at each time point. |
601
|
|
|
|
602
|
|
|
""" |
603
|
|
|
|
604
|
|
|
frames = np.shape(geo_stder[group[0]])[0] |
605
|
|
|
slices = len(group) |
606
|
|
|
video_counter = 0 |
607
|
|
|
w_holder = np.zeros((slices, frames)) |
608
|
|
|
for sample in group: |
609
|
|
|
w_holder[video_counter, :] = 1/(geo_stder[sample]*geo_stder[sample]) |
610
|
|
|
video_counter = video_counter + 1 |
611
|
|
|
|
612
|
|
|
w_holder = ma.masked_equal(w_holder, 0.0) |
613
|
|
|
w_holder = ma.masked_equal(w_holder, 1.0) |
614
|
|
|
|
615
|
|
|
weights = ma.sum(w_holder, axis=0) |
616
|
|
|
|
617
|
|
|
return weights, w_holder |
618
|
|
|
|
619
|
|
|
|
620
|
|
View Code Duplication |
def precision_averaging(group, geomean, geo_stder, weights, save=True, |
|
|
|
|
621
|
|
|
bucket='ccurtis.data', folder='test', |
622
|
|
|
experiment='test'): |
623
|
|
|
"""Calculates precision-weighted averages of MSD datasets. |
624
|
|
|
|
625
|
|
|
Parameters |
626
|
|
|
---------- |
627
|
|
|
group : list of str |
628
|
|
|
List of experiment names to average. Each element corresponds to a key |
629
|
|
|
in geo_stder and geomean. |
630
|
|
|
geomean : dict of numpy.ndarray |
631
|
|
|
Each entry in dictionary corresponds to an MSD profiles, they key |
632
|
|
|
corresponding to an experiment name. |
633
|
|
|
geo_stder : dict of numpy.ndarray |
634
|
|
|
Each entry in dictionary corresponds to the standard errors of an MSD |
635
|
|
|
profile, the key corresponding to an experiment name. |
636
|
|
|
weights : numpy.ndarray |
637
|
|
|
Precision weights to be used in precision averaging. |
638
|
|
|
|
639
|
|
|
Returns |
640
|
|
|
------- |
641
|
|
|
geo : numpy.ndarray |
642
|
|
|
Precision-weighted averaged MSDs from experiments specified in group |
643
|
|
|
geo_stder : numpy.ndarray |
644
|
|
|
Precision-weighted averaged SEMs from experiments specified in group |
645
|
|
|
|
646
|
|
|
""" |
647
|
|
|
|
648
|
|
|
frames = np.shape(geo_stder[group[0]])[0] |
649
|
|
|
slices = len(group) |
650
|
|
|
|
651
|
|
|
video_counter = 0 |
652
|
|
|
geo_holder = np.zeros((slices, frames)) |
653
|
|
|
gstder_holder = np.zeros((slices, frames)) |
654
|
|
|
w_holder = np.zeros((slices, frames)) |
655
|
|
|
for sample in group: |
656
|
|
|
w_holder[video_counter, :] = (1/(geo_stder[sample]*geo_stder[sample]) |
657
|
|
|
)/weights |
|
|
|
|
658
|
|
|
geo_holder[video_counter, :] = w_holder[video_counter, : |
659
|
|
|
] * geomean[sample] |
|
|
|
|
660
|
|
|
gstder_holder[video_counter, :] = 1/(geo_stder[sample]*geo_stder[sample] |
661
|
|
|
) |
|
|
|
|
662
|
|
|
video_counter = video_counter + 1 |
663
|
|
|
|
664
|
|
|
w_holder = ma.masked_equal(w_holder, 0.0) |
665
|
|
|
w_holder = ma.masked_equal(w_holder, 1.0) |
666
|
|
|
geo_holder = ma.masked_equal(geo_holder, 0.0) |
667
|
|
|
geo_holder = ma.masked_equal(geo_holder, 1.0) |
668
|
|
|
gstder_holder = ma.masked_equal(gstder_holder, 0.0) |
669
|
|
|
gstder_holder = ma.masked_equal(gstder_holder, 1.0) |
670
|
|
|
|
671
|
|
|
geo = ma.sum(geo_holder, axis=0) |
672
|
|
|
geo_stder = ma.sqrt((1/ma.sum(gstder_holder, axis=0))) |
673
|
|
|
|
674
|
|
|
if save: |
675
|
|
|
geo_f = 'geomean_{}.csv'.format(experiment) |
676
|
|
|
gstder_f = 'geoSEM_{}.csv'.format(experiment) |
677
|
|
|
np.savetxt(geo_f, geo, delimiter=',') |
678
|
|
|
np.savetxt(gstder_f, geo_stder, delimiter=',') |
679
|
|
|
aws.upload_s3(geo_f, '{}/{}'.format(folder, geo_f), bucket_name=bucket) |
680
|
|
|
aws.upload_s3(gstder_f, '{}/{}'.format(folder, gstder_f), |
681
|
|
|
bucket_name=bucket) |
682
|
|
|
|
683
|
|
|
geodata = Bunch(geomean=geo, geostd=geo_stder, weighthold=w_holder, |
684
|
|
|
geostdhold=gstder_holder) |
685
|
|
|
|
686
|
|
|
return geodata |
687
|
|
|
|
688
|
|
|
|
689
|
|
View Code Duplication |
def plot_all_experiments(experiments, bucket='ccurtis.data', folder='test', |
|
|
|
|
690
|
|
|
yrange=(10**-1, 10**1), fps=100.02, |
691
|
|
|
xrange=(10**-2, 10**0), upload=True, |
692
|
|
|
outfile='test.png', exponential=True): |
693
|
|
|
"""Plots precision-weighted averages of MSD datasets. |
694
|
|
|
|
695
|
|
|
Plots pre-calculated precision-weighted averages of MSD datasets calculated |
696
|
|
|
from precision_averaging and stored in an AWS S3 bucket. |
697
|
|
|
|
698
|
|
|
Parameters |
699
|
|
|
---------- |
700
|
|
|
group : list of str |
701
|
|
|
List of experiment names to plot. Each experiment must have an MSD and |
702
|
|
|
SEM file associated with it in s3. |
703
|
|
|
bucket : str |
704
|
|
|
S3 bucket from which to download data. |
705
|
|
|
folder : str |
706
|
|
|
Folder in s3 bucket from which to download data. |
707
|
|
|
yrange : list of float |
708
|
|
|
Y range of plot |
709
|
|
|
xrange: list of float |
710
|
|
|
X range of plot |
711
|
|
|
upload : bool |
712
|
|
|
True to upload to S3 |
713
|
|
|
outfile : str |
714
|
|
|
Filename of output image |
715
|
|
|
|
716
|
|
|
""" |
717
|
|
|
|
718
|
|
|
n = len(experiments) |
719
|
|
|
|
720
|
|
|
color = iter(cm.viridis(np.linspace(0, 0.9, n))) |
721
|
|
|
|
722
|
|
|
fig = plt.figure(figsize=(8.5, 8.5)) |
723
|
|
|
plt.xlim(xrange[0], xrange[1]) |
724
|
|
|
plt.ylim(yrange[0], yrange[1]) |
725
|
|
|
plt.xlabel('Tau (s)', fontsize=25) |
726
|
|
|
plt.ylabel(r'Mean Squared Displacement ($\mu$m$^2$)', fontsize=25) |
727
|
|
|
|
728
|
|
|
geo = {} |
729
|
|
|
gstder = {} |
730
|
|
|
counter = 0 |
731
|
|
|
for experiment in experiments: |
732
|
|
|
aws.download_s3('{}/geomean_{}.csv'.format(folder, experiment), |
733
|
|
|
'geomean_{}.csv'.format(experiment), bucket_name=bucket) |
734
|
|
|
aws.download_s3('{}/geoSEM_{}.csv'.format(folder, experiment), |
735
|
|
|
'geoSEM_{}.csv'.format(experiment), bucket_name=bucket) |
736
|
|
|
|
737
|
|
|
geo[counter] = np.genfromtxt('geomean_{}.csv'.format(experiment)) |
738
|
|
|
gstder[counter] = np.genfromtxt('geoSEM_{}.csv'.format(experiment)) |
739
|
|
|
geo[counter] = ma.masked_equal(geo[counter], 0.0) |
740
|
|
|
gstder[counter] = ma.masked_equal(gstder[counter], 0.0) |
741
|
|
|
|
742
|
|
|
frames = np.shape(gstder[counter])[0] |
743
|
|
|
xpos = np.linspace(0, frames-1, frames)/fps |
744
|
|
|
c = next(color) |
745
|
|
|
|
746
|
|
|
if exponential: |
747
|
|
|
plt.loglog(xpos, np.exp(geo[counter]), c=c, linewidth=6, |
748
|
|
|
label=experiment) |
749
|
|
|
plt.loglog(xpos, np.exp(geo[counter] - 1.96*gstder[counter]), |
750
|
|
|
c=c, dashes=[6, 2], linewidth=4) |
751
|
|
|
plt.loglog(xpos, np.exp(geo[counter] + 1.96*gstder[counter]), |
752
|
|
|
c=c, dashes=[6, 2], linewidth=4) |
753
|
|
|
else: |
754
|
|
|
plt.loglog(xpos, geo[counter], c=c, linewidth=6, |
755
|
|
|
label=experiment) |
756
|
|
|
plt.loglog(xpos, geo[counter] - 1.96*gstder[counter], c=c, |
757
|
|
|
dashes=[6, 2], linewidth=4) |
758
|
|
|
plt.loglog(xpos, geo[counter] + 1.96*gstder[counter], c=c, |
759
|
|
|
dashes=[6, 2], linewidth=4) |
760
|
|
|
|
761
|
|
|
counter = counter + 1 |
762
|
|
|
|
763
|
|
|
plt.legend(frameon=False, prop={'size': 16}) |
764
|
|
|
|
765
|
|
|
if upload: |
766
|
|
|
fig.savefig(outfile, bbox_inches='tight') |
767
|
|
|
aws.upload_s3(outfile, folder+'/'+outfile, bucket_name=bucket) |
768
|
|
|
|
769
|
|
|
|
770
|
|
View Code Duplication |
def random_walk(nsteps=100, seed=1, start=(0, 0)): |
|
|
|
|
771
|
|
|
"""Creates 2d random walk trajectory. |
772
|
|
|
|
773
|
|
|
Parameters |
774
|
|
|
---------- |
775
|
|
|
nsteps : int |
776
|
|
|
Number of steps for trajectory to move. |
777
|
|
|
seed : int |
778
|
|
|
Seed for pseudo-random number generator for reproducability. |
779
|
|
|
start : tuple of int or float |
780
|
|
|
Starting xy coordinates at which the random walk begins. |
781
|
|
|
|
782
|
|
|
Returns |
783
|
|
|
------- |
784
|
|
|
x : numpy.ndarray |
785
|
|
|
Array of x coordinates of random walk. |
786
|
|
|
y : numpy.ndarray |
787
|
|
|
Array of y coordinates of random walk. |
788
|
|
|
|
789
|
|
|
""" |
790
|
|
|
|
791
|
|
|
rand.seed(a=seed) |
792
|
|
|
|
793
|
|
|
x = np.zeros(nsteps) |
794
|
|
|
y = np.zeros(nsteps) |
795
|
|
|
x[0] = start[0] |
796
|
|
|
y[0] = start[1] |
797
|
|
|
|
798
|
|
|
for i in range(1, nsteps): |
|
|
|
|
799
|
|
|
val = rand.randint(1, 4) |
800
|
|
|
if val == 1: |
801
|
|
|
x[i] = x[i - 1] + 1 |
802
|
|
|
y[i] = y[i - 1] |
803
|
|
|
elif val == 2: |
804
|
|
|
x[i] = x[i - 1] - 1 |
805
|
|
|
y[i] = y[i - 1] |
806
|
|
|
elif val == 3: |
807
|
|
|
x[i] = x[i - 1] |
808
|
|
|
y[i] = y[i - 1] + 1 |
809
|
|
|
else: |
810
|
|
|
x[i] = x[i - 1] |
811
|
|
|
y[i] = y[i - 1] - 1 |
812
|
|
|
|
813
|
|
|
return x, y |
814
|
|
|
|
815
|
|
|
|
816
|
|
View Code Duplication |
def random_traj_dataset(nframes=100, nparts=30, seed=1, fsize=(0, 512), |
|
|
|
|
817
|
|
|
ndist=(1, 2)): |
818
|
|
|
"""Creates a random population of random walks. |
819
|
|
|
|
820
|
|
|
Parameters |
821
|
|
|
---------- |
822
|
|
|
nframes : int |
823
|
|
|
Number of frames for each random trajectory. |
824
|
|
|
nparts : int |
825
|
|
|
Number of particles in trajectory dataset. |
826
|
|
|
seed : int |
827
|
|
|
Seed for pseudo-random number generator for reproducability. |
828
|
|
|
fsize : tuple of int or float |
829
|
|
|
Scope of points over which particles may start at. |
830
|
|
|
ndist : tuple of int or float |
831
|
|
|
Parameters to generate normal distribution, mu and sigma. |
832
|
|
|
|
833
|
|
|
Returns |
834
|
|
|
------- |
835
|
|
|
dataf : pandas.core.frame.DataFrame |
836
|
|
|
Trajectory data containing a 'Frame', 'Track_ID', 'X', and |
837
|
|
|
'Y' column. |
838
|
|
|
|
839
|
|
|
""" |
840
|
|
|
|
841
|
|
|
frames = [] |
842
|
|
|
trackid = [] |
843
|
|
|
x = [] |
844
|
|
|
y = [] |
845
|
|
|
start = [0, 0] |
846
|
|
|
pseed = seed |
847
|
|
|
|
848
|
|
|
for i in range(nparts): |
|
|
|
|
849
|
|
|
rand.seed(a=i+pseed) |
850
|
|
|
start[0] = rand.randint(fsize[0], fsize[1]) |
851
|
|
|
rand.seed(a=i+3+pseed) |
852
|
|
|
start[1] = rand.randint(fsize[0], fsize[1]) |
853
|
|
|
rand.seed(a=i+5+pseed) |
854
|
|
|
weight = rand.normalvariate(mu=ndist[0], sigma=ndist[1]) |
855
|
|
|
|
856
|
|
|
trackid = np.append(trackid, np.array([i]*nframes)) |
857
|
|
|
xi, yi = random_walk(nsteps=nframes, seed=i) |
858
|
|
|
x = np.append(x, weight*xi+start[0]) |
859
|
|
|
y = np.append(y, weight*yi+start[1]) |
860
|
|
|
frames = np.append(frames, np.linspace(0, nframes-1, nframes)) |
861
|
|
|
|
862
|
|
|
datai = {'Frame': frames, |
863
|
|
|
'Track_ID': trackid, |
864
|
|
|
'X': x, |
865
|
|
|
'Y': y, |
866
|
|
|
'Quality': nframes*nparts*[10], |
867
|
|
|
'SN_Ratio': nframes*nparts*[0.1], |
868
|
|
|
'Mean_Intensity': nframes*nparts*[120]} |
869
|
|
|
dataf = pd.DataFrame(data=datai) |
870
|
|
|
|
871
|
|
|
return dataf |
872
|
|
|
|
873
|
|
|
|
874
|
|
|
class Bunch: |
875
|
|
|
def __init__(self, **kwds): |
876
|
|
|
self.__dict__.update(kwds) |
877
|
|
|
|