|
1
|
|
|
import matplotlib as mpl |
|
2
|
|
|
import numpy as np |
|
3
|
|
|
import pandas as pd |
|
4
|
|
|
import matplotlib.pyplot as plt |
|
5
|
|
|
from scipy.spatial import Voronoi |
|
6
|
|
|
import scipy.stats as stats |
|
7
|
|
|
import os |
|
8
|
|
|
import os.path as op |
|
9
|
|
|
from shapely.geometry import Point |
|
10
|
|
|
from shapely.geometry.polygon import Polygon |
|
11
|
|
|
import numpy.ma as ma |
|
12
|
|
|
import matplotlib.cm as cm |
|
13
|
|
|
import diff_classifier.aws as aws |
|
14
|
|
|
|
|
15
|
|
|
|
|
16
|
|
View Code Duplication |
def voronoi_finite_polygons_2d(vor, radius=None): |
|
|
|
|
|
|
17
|
|
|
""" |
|
18
|
|
|
Reconstruct infinite voronoi regions in a 2D diagram to finite |
|
19
|
|
|
regions. |
|
20
|
|
|
|
|
21
|
|
|
Parameters |
|
22
|
|
|
---------- |
|
23
|
|
|
vor : Voronoi |
|
24
|
|
|
Input diagram |
|
25
|
|
|
radius : float, optional |
|
26
|
|
|
Distance to 'points at infinity'. |
|
27
|
|
|
|
|
28
|
|
|
Returns |
|
29
|
|
|
------- |
|
30
|
|
|
regions : list of tuples |
|
31
|
|
|
Indices of vertices in each revised Voronoi regions. |
|
32
|
|
|
vertices : list of tuples |
|
33
|
|
|
Coordinates for revised Voronoi vertices. Same as coordinates |
|
34
|
|
|
of input vertices, with 'points at infinity' appended to the |
|
35
|
|
|
end. |
|
36
|
|
|
|
|
37
|
|
|
""" |
|
38
|
|
|
|
|
39
|
|
|
if vor.points.shape[1] != 2: |
|
40
|
|
|
raise ValueError("Requires 2D input") |
|
41
|
|
|
|
|
42
|
|
|
new_regions = [] |
|
43
|
|
|
new_vertices = vor.vertices.tolist() |
|
44
|
|
|
|
|
45
|
|
|
center = vor.points.mean(axis=0) |
|
46
|
|
|
if radius is None: |
|
47
|
|
|
radius = vor.points.ptp().max() |
|
48
|
|
|
|
|
49
|
|
|
# Construct a map containing all ridges for a given point |
|
50
|
|
|
all_ridges = {} |
|
51
|
|
|
for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices): |
|
52
|
|
|
all_ridges.setdefault(p1, []).append((p2, v1, v2)) |
|
53
|
|
|
all_ridges.setdefault(p2, []).append((p1, v1, v2)) |
|
54
|
|
|
|
|
55
|
|
|
counter = 0 |
|
56
|
|
|
for p1, region in enumerate(vor.point_region): |
|
57
|
|
|
try: |
|
58
|
|
|
vertices = vor.regions[region] |
|
59
|
|
|
|
|
60
|
|
|
if all(v >= 0 for v in vertices): |
|
61
|
|
|
# finite region |
|
62
|
|
|
new_regions.append(vertices) |
|
63
|
|
|
continue |
|
64
|
|
|
|
|
65
|
|
|
# reconstruct a non-finite region |
|
66
|
|
|
ridges = all_ridges[p1] |
|
67
|
|
|
new_region = [v for v in vertices if v >= 0] |
|
68
|
|
|
|
|
69
|
|
|
for p2, v1, v2 in ridges: |
|
70
|
|
|
if v2 < 0: |
|
71
|
|
|
v1, v2 = v2, v1 |
|
72
|
|
|
if v1 >= 0: |
|
73
|
|
|
# finite ridge: already in the region |
|
74
|
|
|
continue |
|
75
|
|
|
|
|
76
|
|
|
# Compute the missing endpoint of an infinite ridge |
|
77
|
|
|
|
|
78
|
|
|
t = vor.points[p2] - vor.points[p1] # tangent |
|
79
|
|
|
t /= np.linalg.norm(t) |
|
80
|
|
|
n = np.array([-t[1], t[0]]) # normal |
|
81
|
|
|
|
|
82
|
|
|
midpoint = vor.points[[p1, p2]].mean(axis=0) |
|
83
|
|
|
direction = np.sign(np.dot(midpoint - center, n)) * n |
|
84
|
|
|
far_point = vor.vertices[v2] + direction * radius |
|
85
|
|
|
|
|
86
|
|
|
new_region.append(len(new_vertices)) |
|
87
|
|
|
new_vertices.append(far_point.tolist()) |
|
88
|
|
|
|
|
89
|
|
|
# sort region counterclockwise |
|
90
|
|
|
vs = np.asarray([new_vertices[v] for v in new_region]) |
|
91
|
|
|
c = vs.mean(axis=0) |
|
92
|
|
|
angles = np.arctan2(vs[:, 1] - c[1], vs[:, 0] - c[0]) |
|
93
|
|
|
new_region = np.array(new_region)[np.argsort(angles)] |
|
94
|
|
|
|
|
95
|
|
|
# finish |
|
96
|
|
|
new_regions.append(new_region.tolist()) |
|
97
|
|
|
except KeyError: |
|
98
|
|
|
counter = counter + 1 |
|
99
|
|
|
# print('Oops {}'.format(counter)) |
|
100
|
|
|
|
|
101
|
|
|
return new_regions, np.asarray(new_vertices) |
|
102
|
|
|
|
|
103
|
|
|
|
|
104
|
|
View Code Duplication |
def plot_heatmap(prefix, feature='asymmetry1', vmin=0, vmax=1, resolution=512, rows=4, cols=4, |
|
|
|
|
|
|
105
|
|
|
upload=True, dpi=None, figsize=(12, 10), remote_folder = "01_18_Experiment", |
|
106
|
|
|
bucket='ccurtis.data'): |
|
107
|
|
|
""" |
|
108
|
|
|
Plot heatmap of trajectories in video with colors corresponding to features. |
|
109
|
|
|
|
|
110
|
|
|
Parameters |
|
111
|
|
|
---------- |
|
112
|
|
|
prefix: string |
|
113
|
|
|
Prefix of file name to be plotted e.g. features_P1.csv prefix is P1. |
|
114
|
|
|
feature: string |
|
115
|
|
|
Feature to be plotted. See features_analysis.py |
|
116
|
|
|
vmin: float64 |
|
117
|
|
|
Lower intensity bound for heatmap. |
|
118
|
|
|
vmax: float64 |
|
119
|
|
|
Upper intensity bound for heatmap. |
|
120
|
|
|
resolution: int |
|
121
|
|
|
Resolution of base image. Only needed to calculate bounds of image. |
|
122
|
|
|
rows: int |
|
123
|
|
|
Rows of base images used to build tiled image. |
|
124
|
|
|
cols: int |
|
125
|
|
|
Columns of base images used to build tiled images. |
|
126
|
|
|
upload: boolean |
|
127
|
|
|
True if you want to upload to s3. |
|
128
|
|
|
dpi: int |
|
129
|
|
|
Desired dpi of output image. |
|
130
|
|
|
figsize: list |
|
131
|
|
|
Desired dimensions of output image. |
|
132
|
|
|
|
|
133
|
|
|
Returns |
|
134
|
|
|
------- |
|
135
|
|
|
|
|
136
|
|
|
""" |
|
137
|
|
|
# Inputs |
|
138
|
|
|
# ---------- |
|
139
|
|
|
merged_ft = pd.read_csv('features_{}.csv'.format(prefix)) |
|
140
|
|
|
string = feature |
|
141
|
|
|
leveler = merged_ft[string] |
|
142
|
|
|
t_min = vmin |
|
143
|
|
|
t_max = vmax |
|
144
|
|
|
ires = resolution |
|
145
|
|
|
|
|
146
|
|
|
# Building points and color schemes |
|
147
|
|
|
# ---------- |
|
148
|
|
|
zs = ma.masked_invalid(merged_ft[string]) |
|
149
|
|
|
zs = ma.masked_where(zs <= t_min, zs) |
|
150
|
|
|
zs = ma.masked_where(zs >= t_max, zs) |
|
151
|
|
|
to_mask = ma.getmask(zs) |
|
152
|
|
|
zs = ma.compressed(zs) |
|
153
|
|
|
|
|
154
|
|
|
xs = ma.compressed(ma.masked_where(to_mask, merged_ft['X'].astype(int))) |
|
155
|
|
|
ys = ma.compressed(ma.masked_where(to_mask, merged_ft['Y'].astype(int))) |
|
156
|
|
|
points = np.zeros((xs.shape[0], 2)) |
|
157
|
|
|
points[:, 0] = xs |
|
158
|
|
|
points[:, 1] = ys |
|
159
|
|
|
vor = Voronoi(points) |
|
160
|
|
|
|
|
161
|
|
|
# Plot |
|
162
|
|
|
# ---------- |
|
163
|
|
|
fig = plt.figure(figsize=figsize, dpi=dpi) |
|
164
|
|
|
regions, vertices = voronoi_finite_polygons_2d(vor) |
|
165
|
|
|
my_map = cm.get_cmap('viridis') |
|
166
|
|
|
norm = mpl.colors.Normalize(t_min, t_max, clip=True) |
|
167
|
|
|
mapper = cm.ScalarMappable(norm=norm, cmap=cm.viridis) |
|
168
|
|
|
|
|
169
|
|
|
test = 0 |
|
170
|
|
|
p2 = 0 |
|
171
|
|
|
counter = 0 |
|
172
|
|
|
for i in range(0, points.shape[0]-1): |
|
|
|
|
|
|
173
|
|
|
try: |
|
174
|
|
|
polygon = vertices[regions[p2]] |
|
175
|
|
|
point1 = Point(points[test, :]) |
|
176
|
|
|
poly1 = Polygon(polygon) |
|
177
|
|
|
check = poly1.contains(point1) |
|
178
|
|
|
if check: |
|
179
|
|
|
plt.fill(*zip(*polygon), color=my_map(norm(zs[test])), alpha=0.7) |
|
180
|
|
|
p2 = p2 + 1 |
|
181
|
|
|
test = test + 1 |
|
182
|
|
|
else: |
|
183
|
|
|
p2 = p2 |
|
184
|
|
|
test = test + 1 |
|
185
|
|
|
except IndexError: |
|
186
|
|
|
print('Index mismatch possible.') |
|
187
|
|
|
|
|
188
|
|
|
mapper.set_array(10) |
|
189
|
|
|
plt.colorbar(mapper) |
|
190
|
|
|
plt.xlim(0, ires*cols) |
|
191
|
|
|
plt.ylim(0, ires*rows) |
|
192
|
|
|
plt.axis('off') |
|
193
|
|
|
|
|
194
|
|
|
print('Plotted {} heatmap successfully.'.format(prefix)) |
|
195
|
|
|
outfile = 'hm_{}_{}.png'.format(feature, prefix) |
|
196
|
|
|
fig.savefig(outfile, bbox_inches='tight') |
|
197
|
|
|
if upload == True: |
|
198
|
|
|
aws.upload_s3(outfile, remote_folder+'/'+outfile, bucket_name=bucket) |
|
199
|
|
|
|
|
200
|
|
|
|
|
201
|
|
View Code Duplication |
def plot_scatterplot(prefix, feature='asymmetry1', vmin=0, vmax=1, resolution=512, rows=4, cols=4, |
|
|
|
|
|
|
202
|
|
|
dotsize=10, figsize=(12, 10), upload=True, remote_folder = "01_18_Experiment", |
|
203
|
|
|
bucket='ccurtis.data'): |
|
204
|
|
|
""" |
|
205
|
|
|
Plot scatterplot of trajectories in video with colors corresponding to features. |
|
206
|
|
|
|
|
207
|
|
|
Parameters |
|
208
|
|
|
---------- |
|
209
|
|
|
prefix: string |
|
210
|
|
|
Prefix of file name to be plotted e.g. features_P1.csv prefix is P1. |
|
211
|
|
|
feature: string |
|
212
|
|
|
Feature to be plotted. See features_analysis.py |
|
213
|
|
|
vmin: float64 |
|
214
|
|
|
Lower intensity bound for heatmap. |
|
215
|
|
|
vmax: float64 |
|
216
|
|
|
Upper intensity bound for heatmap. |
|
217
|
|
|
resolution: int |
|
218
|
|
|
Resolution of base image. Only needed to calculate bounds of image. |
|
219
|
|
|
rows: int |
|
220
|
|
|
Rows of base images used to build tiled image. |
|
221
|
|
|
cols: int |
|
222
|
|
|
Columns of base images used to build tiled images. |
|
223
|
|
|
upload: boolean |
|
224
|
|
|
True if you want to upload to s3. |
|
225
|
|
|
|
|
226
|
|
|
""" |
|
227
|
|
|
# Inputs |
|
228
|
|
|
# ---------- |
|
229
|
|
|
merged_ft = pd.read_csv('features_{}.csv'.format(prefix)) |
|
230
|
|
|
string = feature |
|
231
|
|
|
leveler = merged_ft[string] |
|
232
|
|
|
t_min = vmin |
|
233
|
|
|
t_max = vmax |
|
234
|
|
|
ires = resolution |
|
235
|
|
|
|
|
236
|
|
|
norm = mpl.colors.Normalize(t_min, t_max, clip=True) |
|
237
|
|
|
mapper = cm.ScalarMappable(norm=norm, cmap=cm.viridis) |
|
238
|
|
|
|
|
239
|
|
|
zs = ma.masked_invalid(merged_ft[string]) |
|
240
|
|
|
zs = ma.masked_where(zs <= t_min, zs) |
|
241
|
|
|
zs = ma.masked_where(zs >= t_max, zs) |
|
242
|
|
|
to_mask = ma.getmask(zs) |
|
243
|
|
|
zs = ma.compressed(zs) |
|
244
|
|
|
xs = ma.compressed(ma.masked_where(to_mask, merged_ft['X'].astype(int))) |
|
245
|
|
|
ys = ma.compressed(ma.masked_where(to_mask, merged_ft['Y'].astype(int))) |
|
246
|
|
|
|
|
247
|
|
|
fig = plt.figure(figsize=figsize) |
|
248
|
|
|
plt.scatter(xs, ys, c=zs, s=dotsize) |
|
249
|
|
|
mapper.set_array(10) |
|
250
|
|
|
plt.colorbar(mapper) |
|
251
|
|
|
plt.xlim(0, ires*cols) |
|
252
|
|
|
plt.ylim(0, ires*rows) |
|
253
|
|
|
plt.axis('off') |
|
254
|
|
|
|
|
255
|
|
|
print('Plotted {} scatterplot successfully.'.format(prefix)) |
|
256
|
|
|
outfile = 'scatter_{}_{}.png'.format(feature, prefix) |
|
257
|
|
|
fig.savefig(outfile, bbox_inches='tight') |
|
258
|
|
|
if upload == True: |
|
259
|
|
|
aws.upload_s3(outfile, remote_folder+'/'+outfile, bucket_name=bucket) |
|
260
|
|
|
|
|
261
|
|
|
|
|
262
|
|
View Code Duplication |
def plot_trajectories(prefix, resolution=512, rows=4, cols=4, upload=True, |
|
|
|
|
|
|
263
|
|
|
remote_folder = "01_18_Experiment", bucket='ccurtis.data', |
|
264
|
|
|
figsize=(12, 12), subset=True, size=1000): |
|
265
|
|
|
""" |
|
266
|
|
|
Plot trajectories in video. |
|
267
|
|
|
|
|
268
|
|
|
Parameters |
|
269
|
|
|
---------- |
|
270
|
|
|
prefix: string |
|
271
|
|
|
Prefix of file name to be plotted e.g. features_P1.csv prefix is P1. |
|
272
|
|
|
resolution: int |
|
273
|
|
|
Resolution of base image. Only needed to calculate bounds of image. |
|
274
|
|
|
rows: int |
|
275
|
|
|
Rows of base images used to build tiled image. |
|
276
|
|
|
cols: int |
|
277
|
|
|
Columns of base images used to build tiled images. |
|
278
|
|
|
upload: boolean |
|
279
|
|
|
True if you want to upload to s3. |
|
280
|
|
|
|
|
281
|
|
|
""" |
|
282
|
|
|
merged = pd.read_csv('msd_{}.csv'.format(prefix)) |
|
283
|
|
|
particles = int(max(merged['Track_ID'])) |
|
284
|
|
|
if particles < size: |
|
285
|
|
|
size = particles - 1 |
|
286
|
|
|
else: |
|
287
|
|
|
pass |
|
288
|
|
|
particles = np.linspace(0, particles, particles-1).astype(int) |
|
289
|
|
|
if subset: |
|
290
|
|
|
particles = np.random.choice(particles, size=size, replace=False) |
|
291
|
|
|
ires = resolution |
|
292
|
|
|
|
|
293
|
|
|
fig = plt.figure(figsize=figsize) |
|
294
|
|
|
for part in particles: |
|
295
|
|
|
x = merged[merged['Track_ID'] == part]['X'] |
|
296
|
|
|
y = merged[merged['Track_ID'] == part]['Y'] |
|
297
|
|
|
plt.plot(x, y, color='k', alpha=0.7) |
|
298
|
|
|
|
|
299
|
|
|
plt.xlim(0, ires*cols) |
|
300
|
|
|
plt.ylim(0, ires*rows) |
|
301
|
|
|
plt.axis('off') |
|
302
|
|
|
|
|
303
|
|
|
print('Plotted {} trajectories successfully.'.format(prefix)) |
|
304
|
|
|
outfile = 'traj_{}.png'.format(prefix) |
|
305
|
|
|
fig.savefig(outfile, bbox_inches='tight') |
|
306
|
|
|
if upload: |
|
307
|
|
|
aws.upload_s3(outfile, remote_folder+'/'+outfile, bucket_name=bucket) |
|
308
|
|
|
|
|
309
|
|
|
|
|
310
|
|
View Code Duplication |
def plot_histogram(prefix, xlabel='Log Diffusion Coefficient Dist', ylabel='Trajectory Count', |
|
|
|
|
|
|
311
|
|
|
fps=100.02, umppx=0.16, frames=651, y_range=100, frame_interval=20, frame_range=100, |
|
312
|
|
|
analysis='log', theta='D', upload=True, remote_folder = "01_18_Experiment", |
|
313
|
|
|
bucket='ccurtis.data'): |
|
314
|
|
|
""" |
|
315
|
|
|
Plot heatmap of trajectories in video with colors corresponding to features. |
|
316
|
|
|
|
|
317
|
|
|
Parameters |
|
318
|
|
|
---------- |
|
319
|
|
|
prefix: string |
|
320
|
|
|
Prefix of file name to be plotted e.g. features_P1.csv prefix is P1. |
|
321
|
|
|
xlabel: string |
|
322
|
|
|
X axis label. |
|
323
|
|
|
ylabel: string |
|
324
|
|
|
Y axis label. |
|
325
|
|
|
fps: float64 |
|
326
|
|
|
Frames per second of video. |
|
327
|
|
|
umppx: float64 |
|
328
|
|
|
Resolution of video in microns per pixel. |
|
329
|
|
|
frames: int |
|
330
|
|
|
Number of frames in video. |
|
331
|
|
|
y_range: float64 or int |
|
332
|
|
|
Desire y range of graph. |
|
333
|
|
|
frame_interval: int |
|
334
|
|
|
Desired spacing between MSDs/Deffs to be plotted. |
|
335
|
|
|
analysis: string |
|
336
|
|
|
Desired output format. If log, will plot log(MSDs/Deffs) |
|
337
|
|
|
theta: string |
|
338
|
|
|
Desired output. D for diffusion coefficients. Anything else, MSDs. |
|
339
|
|
|
upload: boolean |
|
340
|
|
|
True if you want to upload to s3. |
|
341
|
|
|
|
|
342
|
|
|
""" |
|
343
|
|
|
merged = pd.read_csv('msd_{}.csv'.format(prefix)) |
|
344
|
|
|
data = merged |
|
345
|
|
|
frame_range = range(frame_interval, frame_range+frame_interval, frame_interval) |
|
|
|
|
|
|
346
|
|
|
|
|
347
|
|
|
# load data |
|
348
|
|
|
|
|
349
|
|
|
# generate keys for legend |
|
350
|
|
|
bar = {} |
|
351
|
|
|
keys = [] |
|
352
|
|
|
entries = [] |
|
353
|
|
|
for i in range(0, len(list(frame_range))): |
|
354
|
|
|
keys.append(i) |
|
355
|
|
|
entries.append(str(10*frame_interval*(i+1)) + 'ms') |
|
356
|
|
|
|
|
357
|
|
|
set_x_limit = False |
|
358
|
|
|
set_y_limit = True |
|
359
|
|
|
colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] |
|
360
|
|
|
fig = plt.figure(figsize=(16, 6)) |
|
361
|
|
|
|
|
362
|
|
|
counter = 0 |
|
363
|
|
|
for i in frame_range: |
|
364
|
|
|
toi = i/fps |
|
365
|
|
|
if theta == "MSD": |
|
366
|
|
|
factor = 1 |
|
367
|
|
|
else: |
|
368
|
|
|
factor = 4*toi |
|
369
|
|
|
|
|
370
|
|
|
if analysis == 'log': |
|
371
|
|
|
dist = np.log(umppx*umppx*merged.loc[merged.Frame == i, 'MSDs'].dropna()/factor) |
|
372
|
|
|
test_bins = np.linspace(-5, 5, 76) |
|
373
|
|
|
else: |
|
374
|
|
|
dist = umppx*umppx*merged.loc[merged.Frame == i, 'MSDs'].dropna()/factor |
|
375
|
|
|
test_bins = np.linspace(0, 20, 76) |
|
376
|
|
|
|
|
377
|
|
|
histogram, test_bins = np.histogram(dist, bins=test_bins) |
|
378
|
|
|
|
|
379
|
|
|
# Plot_general_histogram_code |
|
380
|
|
|
avg = np.mean(dist) |
|
381
|
|
|
|
|
382
|
|
|
plt.rc('axes', linewidth=2) |
|
383
|
|
|
plot = histogram |
|
384
|
|
|
bins = test_bins |
|
385
|
|
|
width = 0.7 * (bins[1] - bins[0]) |
|
386
|
|
|
center = (bins[:-1] + bins[1:])/2 |
|
387
|
|
|
bar[keys[counter]] = plt.bar(center, plot, align='center', width=width, color=colors[counter], label=entries[counter]) |
|
388
|
|
|
plt.axvline(avg, color=colors[counter]) |
|
389
|
|
|
plt.xlabel(xlabel, fontsize=30) |
|
390
|
|
|
plt.ylabel(ylabel, fontsize=30) |
|
391
|
|
|
plt.tick_params(axis='both', which='major', labelsize=20) |
|
392
|
|
|
|
|
393
|
|
|
counter = counter + 1 |
|
394
|
|
|
if set_y_limit: |
|
395
|
|
|
plt.gca().set_ylim([0, y_range]) |
|
396
|
|
|
|
|
397
|
|
|
if set_x_limit: |
|
398
|
|
|
plt.gca().set_xlim([0, x_range]) |
|
|
|
|
|
|
399
|
|
|
|
|
400
|
|
|
plt.legend(fontsize=20, frameon=False) |
|
401
|
|
|
outfile = 'hist_{}.png'.format(prefix) |
|
402
|
|
|
fig.savefig(outfile, bbox_inches='tight') |
|
403
|
|
|
if upload==True: |
|
404
|
|
|
aws.upload_s3(outfile, remote_folder+'/'+outfile, bucket_name=bucket) |
|
405
|
|
|
|
|
406
|
|
|
|
|
407
|
|
View Code Duplication |
def plot_particles_in_frame(prefix, x_range=600, y_range=2000, upload=True, |
|
|
|
|
|
|
408
|
|
|
remote_folder = "01_18_Experiment", bucket='ccurtis.data'): |
|
409
|
|
|
""" |
|
410
|
|
|
Plot number of particles per frame as a function of time. |
|
411
|
|
|
|
|
412
|
|
|
Parameters |
|
413
|
|
|
---------- |
|
414
|
|
|
prefix: string |
|
415
|
|
|
Prefix of file name to be plotted e.g. features_P1.csv prefix is P1. |
|
416
|
|
|
x_range: float64 or int |
|
417
|
|
|
Desire x range of graph. |
|
418
|
|
|
y_range: float64 or int |
|
419
|
|
|
Desire y range of graph. |
|
420
|
|
|
upload: boolean |
|
421
|
|
|
True if you want to upload to s3. |
|
422
|
|
|
|
|
423
|
|
|
""" |
|
424
|
|
|
merged = pd.read_csv('msd_{}.csv'.format(prefix)) |
|
425
|
|
|
frames = int(max(merged['Frame'])) |
|
426
|
|
|
framespace = np.linspace(0, frames, frames) |
|
427
|
|
|
particles = np.zeros((framespace.shape[0])) |
|
428
|
|
|
for i in range(0, frames): |
|
|
|
|
|
|
429
|
|
|
particles[i] = merged.loc[merged.Frame == i, 'MSDs'].dropna().shape[0] |
|
430
|
|
|
|
|
431
|
|
|
fig = plt.figure(figsize=(5, 5)) |
|
432
|
|
|
plt.plot(framespace, particles, linewidth=4) |
|
433
|
|
|
plt.xlim(0, x_range) |
|
434
|
|
|
plt.ylim(0, y_range) |
|
435
|
|
|
plt.xlabel('Frames', fontsize=20) |
|
436
|
|
|
plt.ylabel('Particles', fontsize=20) |
|
437
|
|
|
|
|
438
|
|
|
outfile = 'in_frame_{}.png'.format(prefix) |
|
439
|
|
|
fig.savefig(outfile, bbox_inches='tight') |
|
440
|
|
|
if upload == True: |
|
441
|
|
|
aws.upload_s3(outfile, remote_folder+'/'+outfile, bucket_name=bucket) |
|
442
|
|
|
|
|
443
|
|
|
|
|
444
|
|
View Code Duplication |
def plot_individual_msds(prefix, x_range=100, y_range=20, umppx=0.16, fps=100.02, alpha=0.1, folder='.', upload=True, |
|
|
|
|
|
|
445
|
|
|
remote_folder="01_18_Experiment", bucket='ccurtis.data', figsize=(10, 10), subset=True, size=1000): |
|
446
|
|
|
""" |
|
447
|
|
|
Plot MSDs of trajectories and the geometric average. |
|
448
|
|
|
|
|
449
|
|
|
Parameters |
|
450
|
|
|
---------- |
|
451
|
|
|
prefix: string |
|
452
|
|
|
Prefix of file name to be plotted e.g. features_P1.csv prefix is P1. |
|
453
|
|
|
x_range: float64 or int |
|
454
|
|
|
Desire x range of graph. |
|
455
|
|
|
y_range: float64 or int |
|
456
|
|
|
Desire y range of graph. |
|
457
|
|
|
fps: float64 |
|
458
|
|
|
Frames per second of video. |
|
459
|
|
|
umppx: float64 |
|
460
|
|
|
Resolution of video in microns per pixel. |
|
461
|
|
|
alpha: float64 |
|
462
|
|
|
Transparency factor. Between 0 and 1. |
|
463
|
|
|
upload: boolean |
|
464
|
|
|
True if you want to upload to s3. |
|
465
|
|
|
|
|
466
|
|
|
Returns |
|
467
|
|
|
------- |
|
468
|
|
|
geo_mean: numpy array |
|
469
|
|
|
Geometric mean of trajectory MSDs at all time points. |
|
470
|
|
|
geo_SEM: numpy array |
|
471
|
|
|
Geometric standard errot of trajectory MSDs at all time points. |
|
472
|
|
|
|
|
473
|
|
|
""" |
|
474
|
|
|
|
|
475
|
|
|
merged = pd.read_csv('{}/msd_{}.csv'.format(folder, prefix)) |
|
476
|
|
|
|
|
477
|
|
|
fig = plt.figure(figsize=figsize) |
|
478
|
|
|
particles = int(max(merged['Track_ID'])) |
|
479
|
|
|
|
|
480
|
|
|
if particles < size: |
|
481
|
|
|
size = particles - 1 |
|
482
|
|
|
else: |
|
483
|
|
|
pass |
|
484
|
|
|
|
|
485
|
|
|
frames = int(max(merged['Frame'])) |
|
486
|
|
|
|
|
487
|
|
|
y = merged['Y'].values.reshape((particles+1, frames+1))*umppx*umppx |
|
488
|
|
|
x = merged['X'].values.reshape((particles+1, frames+1))/fps |
|
489
|
|
|
# for i in range(0, particles+1): |
|
490
|
|
|
# y[i, :] = merged.loc[merged.Track_ID == i, 'MSDs']*umppx*umppx |
|
491
|
|
|
# x = merged.loc[merged.Track_ID == i, 'Frame']/fps |
|
492
|
|
|
|
|
493
|
|
|
particles = np.linspace(0, particles, particles-1).astype(int) |
|
494
|
|
|
if subset: |
|
495
|
|
|
particles = np.random.choice(particles, size=size, replace=False) |
|
496
|
|
|
|
|
497
|
|
|
y = np.zeros((particles.shape[0], frames+1)) |
|
498
|
|
|
for idx, val in enumerate(particles): |
|
499
|
|
|
y[idx, :] = merged.loc[merged.Track_ID == val, 'MSDs']*umppx*umppx |
|
500
|
|
|
x = merged.loc[merged.Track_ID == val, 'Frame']/fps |
|
501
|
|
|
plt.plot(x, y[idx, :], 'k', alpha=alpha) |
|
502
|
|
|
|
|
503
|
|
|
geo_mean = np.nanmean(ma.log(y), axis=0) |
|
504
|
|
|
geo_SEM = stats.sem(ma.log(y), axis=0, nan_policy='omit') |
|
505
|
|
|
plt.plot(x, np.exp(geo_mean), 'k', linewidth=4) |
|
506
|
|
|
plt.plot(x, np.exp(geo_mean-geo_SEM), 'k--', linewidth=2) |
|
507
|
|
|
plt.plot(x, np.exp(geo_mean+geo_SEM), 'k--', linewidth=2) |
|
508
|
|
|
plt.xlim(0, x_range) |
|
509
|
|
|
plt.ylim(0, y_range) |
|
510
|
|
|
plt.xlabel('Tau (s)', fontsize=25) |
|
511
|
|
|
plt.ylabel(r'Mean Squared Displacement ($\mu$m$^2$)', fontsize=25) |
|
512
|
|
|
|
|
513
|
|
|
outfile = '{}/msds_{}.png'.format(folder, prefix) |
|
514
|
|
|
outfile2 = '{}/geomean_{}.csv'.format(folder, prefix) |
|
515
|
|
|
outfile3 = '{}/geoSEM_{}.csv'.format(folder, prefix) |
|
516
|
|
|
fig.savefig(outfile, bbox_inches='tight') |
|
517
|
|
|
np.savetxt(outfile2, geo_mean, delimiter=",") |
|
518
|
|
|
np.savetxt(outfile3, geo_SEM, delimiter=",") |
|
519
|
|
|
if upload: |
|
520
|
|
|
aws.upload_s3(outfile, remote_folder+'/'+outfile, bucket_name=bucket) |
|
521
|
|
|
aws.upload_s3(outfile2, remote_folder+'/'+outfile2, bucket_name=bucket) |
|
522
|
|
|
aws.upload_s3(outfile3, remote_folder+'/'+outfile3, bucket_name=bucket) |
|
523
|
|
|
return geo_mean, geo_SEM |
|
524
|
|
|
|