@@ 269-295 (lines=27) @@ | ||
266 | -0.21501108474766228) |
|
267 | ||
268 | ||
269 | def test_efficiency(): |
|
270 | frames = 100 |
|
271 | data = {'Frame': np.linspace(0, frames, frames), |
|
272 | 'X': np.sin(np.linspace(0, frames, frames)+3), |
|
273 | 'Y': np.cos(np.linspace(0, frames, frames)+3), |
|
274 | 'Track_ID': np.ones(frames), |
|
275 | 'Quality': 10.0*np.ones(frames), |
|
276 | 'SN_Ratio': 0.1*np.ones(frames), |
|
277 | 'Mean_Intensity': 10.0*np.ones(frames)} |
|
278 | dframe = pd.DataFrame(data=data) |
|
279 | dframe = msd.all_msds2(dframe, frames=frames+1) |
|
280 | ||
281 | assert ft.efficiency(dframe) ==\ |
|
282 | (0.003548421265914009, 0.0059620286331768385) |
|
283 | ||
284 | frames = 10 |
|
285 | data = {'Frame': np.linspace(0, frames, frames), |
|
286 | 'X': np.linspace(0, frames, frames)+5, |
|
287 | 'Y': np.linspace(0, frames, frames)+3, |
|
288 | 'Track_ID': np.ones(frames), |
|
289 | 'Quality': 10.0*np.ones(frames), |
|
290 | 'SN_Ratio': 0.1*np.ones(frames), |
|
291 | 'Mean_Intensity': 10.0*np.ones(frames)} |
|
292 | dframe = pd.DataFrame(data=data) |
|
293 | dframe = msd.all_msds2(dframe, frames=frames+1) |
|
294 | ||
295 | assert ft.efficiency(dframe) == (10.0, 1.0) |
|
296 | ||
297 | ||
298 | def test_msd_ratio(): |
|
@@ 241-266 (lines=26) @@ | ||
238 | npt.assert_almost_equal(ft.aspectratio(dframe)[2], np.array([1.5, 1.])) |
|
239 | ||
240 | ||
241 | def test_boundedness(): |
|
242 | frames = 100 |
|
243 | data = {'Frame': np.linspace(0, frames, frames), |
|
244 | 'X': np.sin(np.linspace(0, frames, frames)+3), |
|
245 | 'Y': np.cos(np.linspace(0, frames, frames)+3), |
|
246 | 'Track_ID': np.ones(frames), |
|
247 | 'Quality': 10.0*np.ones(frames), |
|
248 | 'SN_Ratio': 0.1*np.ones(frames), |
|
249 | 'Mean_Intensity': 10.0*np.ones(frames)} |
|
250 | dframe = pd.DataFrame(data=data) |
|
251 | dframe = msd.all_msds2(dframe, frames=frames+1) |
|
252 | assert ft.boundedness(dframe) == (0.607673328076712, 5.674370543833708, |
|
253 | -0.0535555587618044) |
|
254 | ||
255 | frames = 10 |
|
256 | data = {'Frame': np.linspace(0, frames, frames), |
|
257 | 'X': np.linspace(0, frames, frames)+5, |
|
258 | 'Y': np.linspace(0, frames, frames)+3, |
|
259 | 'Track_ID': np.ones(frames), |
|
260 | 'Quality': 10.0*np.ones(frames), |
|
261 | 'SN_Ratio': 0.1*np.ones(frames), |
|
262 | 'Mean_Intensity': 10.0*np.ones(frames)} |
|
263 | dframe = pd.DataFrame(data=data) |
|
264 | dframe = msd.all_msds2(dframe, frames=frames+1) |
|
265 | assert ft.boundedness(dframe) == (0.039999999999999994, 1.0, |
|
266 | -0.21501108474766228) |
|
267 | ||
268 | ||
269 | def test_efficiency(): |
|
@@ 107-130 (lines=24) @@ | ||
104 | npt.assert_almost_equal(o4, d4) |
|
105 | ||
106 | ||
107 | def test_kurtosis(): |
|
108 | frames = 5 |
|
109 | data = {'Frame': np.linspace(0, frames, frames), |
|
110 | 'X': np.linspace(0, frames, frames)+5, |
|
111 | 'Y': np.linspace(0, frames, frames)+3, |
|
112 | 'Track_ID': np.ones(frames), |
|
113 | 'Quality': 10.0*np.ones(frames), |
|
114 | 'SN_Ratio': 0.1*np.ones(frames), |
|
115 | 'Mean_Intensity': 10.0*np.ones(frames)} |
|
116 | dframe = pd.DataFrame(data=data) |
|
117 | dframe = msd.all_msds2(dframe, frames=frames+1) |
|
118 | assert ft.kurtosis(dframe) == 4.079999999999999 |
|
119 | ||
120 | frames = 10 |
|
121 | data = {'Frame': np.linspace(0, frames, frames), |
|
122 | 'X': np.sin(np.linspace(0, frames, frames)+3), |
|
123 | 'Y': np.cos(np.linspace(0, frames, frames)+3), |
|
124 | 'Track_ID': np.ones(frames), |
|
125 | 'Quality': 10.0*np.ones(frames), |
|
126 | 'SN_Ratio': 0.1*np.ones(frames), |
|
127 | 'Mean_Intensity': 10.0*np.ones(frames)} |
|
128 | dframe = pd.DataFrame(data=data) |
|
129 | dframe = msd.all_msds2(dframe, frames=frames+1) |
|
130 | assert ft.kurtosis(dframe) == 1.4759027695843443 |
|
131 | ||
132 | ||
133 | def test_asymmetry(): |
|
@@ 40-63 (lines=24) @@ | ||
37 | pdt.assert_frame_equal(ft.unmask_track(m_df[m_df['Track_ID'] == 2]), dft) |
|
38 | ||
39 | ||
40 | def test_alpha_calc(): |
|
41 | frames = 5 |
|
42 | data = {'Frame': np.linspace(0, frames, frames), |
|
43 | 'X': np.linspace(0, frames, frames)+5, |
|
44 | 'Y': np.linspace(0, frames, frames)+3, |
|
45 | 'Track_ID': np.ones(frames), |
|
46 | 'Quality': 10.0*np.ones(frames), |
|
47 | 'SN_Ratio': 0.1*np.ones(frames), |
|
48 | 'Mean_Intensity': 10.0*np.ones(frames)} |
|
49 | dframe = pd.DataFrame(data=data) |
|
50 | dframe = msd.all_msds2(dframe, frames=frames+1) |
|
51 | assert ft.alpha_calc(dframe) == (2.0000000000000004, 0.4999999999999998) |
|
52 | ||
53 | frames = 10 |
|
54 | data = {'Frame': np.linspace(0, frames, frames), |
|
55 | 'X': np.sin(np.linspace(0, frames, frames)+5), |
|
56 | 'Y': np.cos(np.linspace(0, frames, frames)+3), |
|
57 | 'Track_ID': np.ones(frames), |
|
58 | 'Quality': 10.0*np.ones(frames), |
|
59 | 'SN_Ratio': 0.1*np.ones(frames), |
|
60 | 'Mean_Intensity': 10.0*np.ones(frames)} |
|
61 | dframe = pd.DataFrame(data=data) |
|
62 | dframe = msd.all_msds2(dframe, frames=frames+1) |
|
63 | assert ft.alpha_calc(dframe) == (0.8201034110620524, 0.1494342948594476) |
|
64 | ||
65 | ||
66 | def test_gyration_tensor(): |