Code Duplication    Length = 24-27 lines in 4 locations

diff_classifier/tests/test_features.py 4 locations

@@ 269-295 (lines=27) @@
266
                                      -0.21501108474766228)
267
268
269
def test_efficiency():
270
    frames = 100
271
    data = {'Frame': np.linspace(0, frames, frames),
272
            'X': np.sin(np.linspace(0, frames, frames)+3),
273
            'Y': np.cos(np.linspace(0, frames, frames)+3),
274
            'Track_ID': np.ones(frames),
275
            'Quality': 10.0*np.ones(frames),
276
            'SN_Ratio': 0.1*np.ones(frames),
277
            'Mean_Intensity': 10.0*np.ones(frames)}
278
    dframe = pd.DataFrame(data=data)
279
    dframe = msd.all_msds2(dframe, frames=frames+1)
280
281
    assert ft.efficiency(dframe) ==\
282
        (0.003548421265914009, 0.0059620286331768385)
283
284
    frames = 10
285
    data = {'Frame': np.linspace(0, frames, frames),
286
            'X': np.linspace(0, frames, frames)+5,
287
            'Y': np.linspace(0, frames, frames)+3,
288
            'Track_ID': np.ones(frames),
289
            'Quality': 10.0*np.ones(frames),
290
            'SN_Ratio': 0.1*np.ones(frames),
291
            'Mean_Intensity': 10.0*np.ones(frames)}
292
    dframe = pd.DataFrame(data=data)
293
    dframe = msd.all_msds2(dframe, frames=frames+1)
294
295
    assert ft.efficiency(dframe) == (10.0, 1.0)
296
297
298
def test_msd_ratio():
@@ 241-266 (lines=26) @@
238
    npt.assert_almost_equal(ft.aspectratio(dframe)[2], np.array([1.5, 1.]))
239
240
241
def test_boundedness():
242
    frames = 100
243
    data = {'Frame': np.linspace(0, frames, frames),
244
            'X': np.sin(np.linspace(0, frames, frames)+3),
245
            'Y': np.cos(np.linspace(0, frames, frames)+3),
246
            'Track_ID': np.ones(frames),
247
            'Quality': 10.0*np.ones(frames),
248
            'SN_Ratio': 0.1*np.ones(frames),
249
            'Mean_Intensity': 10.0*np.ones(frames)}
250
    dframe = pd.DataFrame(data=data)
251
    dframe = msd.all_msds2(dframe, frames=frames+1)
252
    assert ft.boundedness(dframe) == (0.607673328076712, 5.674370543833708,
253
                                      -0.0535555587618044)
254
255
    frames = 10
256
    data = {'Frame': np.linspace(0, frames, frames),
257
            'X': np.linspace(0, frames, frames)+5,
258
            'Y': np.linspace(0, frames, frames)+3,
259
            'Track_ID': np.ones(frames),
260
            'Quality': 10.0*np.ones(frames),
261
            'SN_Ratio': 0.1*np.ones(frames),
262
            'Mean_Intensity': 10.0*np.ones(frames)}
263
    dframe = pd.DataFrame(data=data)
264
    dframe = msd.all_msds2(dframe, frames=frames+1)
265
    assert ft.boundedness(dframe) == (0.039999999999999994, 1.0,
266
                                      -0.21501108474766228)
267
268
269
def test_efficiency():
@@ 107-130 (lines=24) @@
104
    npt.assert_almost_equal(o4, d4)
105
106
107
def test_kurtosis():
108
    frames = 5
109
    data = {'Frame': np.linspace(0, frames, frames),
110
            'X': np.linspace(0, frames, frames)+5,
111
            'Y': np.linspace(0, frames, frames)+3,
112
            'Track_ID': np.ones(frames),
113
            'Quality': 10.0*np.ones(frames),
114
            'SN_Ratio': 0.1*np.ones(frames),
115
            'Mean_Intensity': 10.0*np.ones(frames)}
116
    dframe = pd.DataFrame(data=data)
117
    dframe = msd.all_msds2(dframe, frames=frames+1)
118
    assert ft.kurtosis(dframe) == 4.079999999999999
119
120
    frames = 10
121
    data = {'Frame': np.linspace(0, frames, frames),
122
            'X': np.sin(np.linspace(0, frames, frames)+3),
123
            'Y': np.cos(np.linspace(0, frames, frames)+3),
124
            'Track_ID': np.ones(frames),
125
            'Quality': 10.0*np.ones(frames),
126
            'SN_Ratio': 0.1*np.ones(frames),
127
            'Mean_Intensity': 10.0*np.ones(frames)}
128
    dframe = pd.DataFrame(data=data)
129
    dframe = msd.all_msds2(dframe, frames=frames+1)
130
    assert ft.kurtosis(dframe) == 1.4759027695843443
131
132
133
def test_asymmetry():
@@ 40-63 (lines=24) @@
37
    pdt.assert_frame_equal(ft.unmask_track(m_df[m_df['Track_ID'] == 2]), dft)
38
39
40
def test_alpha_calc():
41
    frames = 5
42
    data = {'Frame': np.linspace(0, frames, frames),
43
            'X': np.linspace(0, frames, frames)+5,
44
            'Y': np.linspace(0, frames, frames)+3,
45
            'Track_ID': np.ones(frames),
46
            'Quality': 10.0*np.ones(frames),
47
            'SN_Ratio': 0.1*np.ones(frames),
48
            'Mean_Intensity': 10.0*np.ones(frames)}
49
    dframe = pd.DataFrame(data=data)
50
    dframe = msd.all_msds2(dframe, frames=frames+1)
51
    assert ft.alpha_calc(dframe) == (2.0000000000000004, 0.4999999999999998)
52
53
    frames = 10
54
    data = {'Frame': np.linspace(0, frames, frames),
55
            'X': np.sin(np.linspace(0, frames, frames)+5),
56
            'Y': np.cos(np.linspace(0, frames, frames)+3),
57
            'Track_ID': np.ones(frames),
58
            'Quality': 10.0*np.ones(frames),
59
            'SN_Ratio': 0.1*np.ones(frames),
60
            'Mean_Intensity': 10.0*np.ones(frames)}
61
    dframe = pd.DataFrame(data=data)
62
    dframe = msd.all_msds2(dframe, frames=frames+1)
63
    assert ft.alpha_calc(dframe) == (0.8201034110620524, 0.1494342948594476)
64
65
66
def test_gyration_tensor():