|
@@ 269-295 (lines=27) @@
|
| 266 |
|
-0.21501108474766228) |
| 267 |
|
|
| 268 |
|
|
| 269 |
|
def test_efficiency(): |
| 270 |
|
frames = 100 |
| 271 |
|
data = {'Frame': np.linspace(0, frames, frames), |
| 272 |
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
| 273 |
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
| 274 |
|
'Track_ID': np.ones(frames), |
| 275 |
|
'Quality': 10.0*np.ones(frames), |
| 276 |
|
'SN_Ratio': 0.1*np.ones(frames), |
| 277 |
|
'Mean_Intensity': 10.0*np.ones(frames)} |
| 278 |
|
dframe = pd.DataFrame(data=data) |
| 279 |
|
dframe = msd.all_msds2(dframe, frames=frames+1) |
| 280 |
|
|
| 281 |
|
assert ft.efficiency(dframe) ==\ |
| 282 |
|
(0.003548421265914009, 0.0059620286331768385) |
| 283 |
|
|
| 284 |
|
frames = 10 |
| 285 |
|
data = {'Frame': np.linspace(0, frames, frames), |
| 286 |
|
'X': np.linspace(0, frames, frames)+5, |
| 287 |
|
'Y': np.linspace(0, frames, frames)+3, |
| 288 |
|
'Track_ID': np.ones(frames), |
| 289 |
|
'Quality': 10.0*np.ones(frames), |
| 290 |
|
'SN_Ratio': 0.1*np.ones(frames), |
| 291 |
|
'Mean_Intensity': 10.0*np.ones(frames)} |
| 292 |
|
dframe = pd.DataFrame(data=data) |
| 293 |
|
dframe = msd.all_msds2(dframe, frames=frames+1) |
| 294 |
|
|
| 295 |
|
assert ft.efficiency(dframe) == (10.0, 1.0) |
| 296 |
|
|
| 297 |
|
|
| 298 |
|
def test_msd_ratio(): |
|
@@ 241-266 (lines=26) @@
|
| 238 |
|
npt.assert_almost_equal(ft.aspectratio(dframe)[2], np.array([1.5, 1.])) |
| 239 |
|
|
| 240 |
|
|
| 241 |
|
def test_boundedness(): |
| 242 |
|
frames = 100 |
| 243 |
|
data = {'Frame': np.linspace(0, frames, frames), |
| 244 |
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
| 245 |
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
| 246 |
|
'Track_ID': np.ones(frames), |
| 247 |
|
'Quality': 10.0*np.ones(frames), |
| 248 |
|
'SN_Ratio': 0.1*np.ones(frames), |
| 249 |
|
'Mean_Intensity': 10.0*np.ones(frames)} |
| 250 |
|
dframe = pd.DataFrame(data=data) |
| 251 |
|
dframe = msd.all_msds2(dframe, frames=frames+1) |
| 252 |
|
assert ft.boundedness(dframe) == (0.607673328076712, 5.674370543833708, |
| 253 |
|
-0.0535555587618044) |
| 254 |
|
|
| 255 |
|
frames = 10 |
| 256 |
|
data = {'Frame': np.linspace(0, frames, frames), |
| 257 |
|
'X': np.linspace(0, frames, frames)+5, |
| 258 |
|
'Y': np.linspace(0, frames, frames)+3, |
| 259 |
|
'Track_ID': np.ones(frames), |
| 260 |
|
'Quality': 10.0*np.ones(frames), |
| 261 |
|
'SN_Ratio': 0.1*np.ones(frames), |
| 262 |
|
'Mean_Intensity': 10.0*np.ones(frames)} |
| 263 |
|
dframe = pd.DataFrame(data=data) |
| 264 |
|
dframe = msd.all_msds2(dframe, frames=frames+1) |
| 265 |
|
assert ft.boundedness(dframe) == (0.039999999999999994, 1.0, |
| 266 |
|
-0.21501108474766228) |
| 267 |
|
|
| 268 |
|
|
| 269 |
|
def test_efficiency(): |
|
@@ 107-130 (lines=24) @@
|
| 104 |
|
npt.assert_almost_equal(o4, d4) |
| 105 |
|
|
| 106 |
|
|
| 107 |
|
def test_kurtosis(): |
| 108 |
|
frames = 5 |
| 109 |
|
data = {'Frame': np.linspace(0, frames, frames), |
| 110 |
|
'X': np.linspace(0, frames, frames)+5, |
| 111 |
|
'Y': np.linspace(0, frames, frames)+3, |
| 112 |
|
'Track_ID': np.ones(frames), |
| 113 |
|
'Quality': 10.0*np.ones(frames), |
| 114 |
|
'SN_Ratio': 0.1*np.ones(frames), |
| 115 |
|
'Mean_Intensity': 10.0*np.ones(frames)} |
| 116 |
|
dframe = pd.DataFrame(data=data) |
| 117 |
|
dframe = msd.all_msds2(dframe, frames=frames+1) |
| 118 |
|
assert ft.kurtosis(dframe) == 4.079999999999999 |
| 119 |
|
|
| 120 |
|
frames = 10 |
| 121 |
|
data = {'Frame': np.linspace(0, frames, frames), |
| 122 |
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
| 123 |
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
| 124 |
|
'Track_ID': np.ones(frames), |
| 125 |
|
'Quality': 10.0*np.ones(frames), |
| 126 |
|
'SN_Ratio': 0.1*np.ones(frames), |
| 127 |
|
'Mean_Intensity': 10.0*np.ones(frames)} |
| 128 |
|
dframe = pd.DataFrame(data=data) |
| 129 |
|
dframe = msd.all_msds2(dframe, frames=frames+1) |
| 130 |
|
assert ft.kurtosis(dframe) == 1.4759027695843443 |
| 131 |
|
|
| 132 |
|
|
| 133 |
|
def test_asymmetry(): |
|
@@ 40-63 (lines=24) @@
|
| 37 |
|
pdt.assert_frame_equal(ft.unmask_track(m_df[m_df['Track_ID'] == 2]), dft) |
| 38 |
|
|
| 39 |
|
|
| 40 |
|
def test_alpha_calc(): |
| 41 |
|
frames = 5 |
| 42 |
|
data = {'Frame': np.linspace(0, frames, frames), |
| 43 |
|
'X': np.linspace(0, frames, frames)+5, |
| 44 |
|
'Y': np.linspace(0, frames, frames)+3, |
| 45 |
|
'Track_ID': np.ones(frames), |
| 46 |
|
'Quality': 10.0*np.ones(frames), |
| 47 |
|
'SN_Ratio': 0.1*np.ones(frames), |
| 48 |
|
'Mean_Intensity': 10.0*np.ones(frames)} |
| 49 |
|
dframe = pd.DataFrame(data=data) |
| 50 |
|
dframe = msd.all_msds2(dframe, frames=frames+1) |
| 51 |
|
assert ft.alpha_calc(dframe) == (2.0000000000000004, 0.4999999999999998) |
| 52 |
|
|
| 53 |
|
frames = 10 |
| 54 |
|
data = {'Frame': np.linspace(0, frames, frames), |
| 55 |
|
'X': np.sin(np.linspace(0, frames, frames)+5), |
| 56 |
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
| 57 |
|
'Track_ID': np.ones(frames), |
| 58 |
|
'Quality': 10.0*np.ones(frames), |
| 59 |
|
'SN_Ratio': 0.1*np.ones(frames), |
| 60 |
|
'Mean_Intensity': 10.0*np.ones(frames)} |
| 61 |
|
dframe = pd.DataFrame(data=data) |
| 62 |
|
dframe = msd.all_msds2(dframe, frames=frames+1) |
| 63 |
|
assert ft.alpha_calc(dframe) == (0.8201034110620524, 0.1494342948594476) |
| 64 |
|
|
| 65 |
|
|
| 66 |
|
def test_gyration_tensor(): |