|
@@ 174-185 (lines=12) @@
|
| 171 |
|
# assert len(xy[1]) == 250 |
| 172 |
|
|
| 173 |
|
|
| 174 |
|
def test_feature_plot_3D(): |
| 175 |
|
|
| 176 |
|
np.random.seed(seed=1) |
| 177 |
|
dataset = {'label': 250*['yes'] + 250*['no'], |
| 178 |
|
0: np.random.normal(0.5, 1, size=500), |
| 179 |
|
1: np.random.normal(1, 2, size=500), |
| 180 |
|
2: np.random.normal(3, 10, size=500) |
| 181 |
|
} |
| 182 |
|
df = pd.DataFrame(data=dataset) |
| 183 |
|
|
| 184 |
|
xy = pca.feature_plot_3D(df, label='label', features=[0, 1, 2], randsel=True, |
| 185 |
|
fname='test1.png') |
| 186 |
|
# assert len(xy[1]) == 200 |
| 187 |
|
# assert os.path.isfile('test1.png') |
| 188 |
|
# |
|
@@ 155-166 (lines=12) @@
|
| 152 |
|
assert np.round(np.mean(to_violin['Feature Value']), 1) == 2.1 |
| 153 |
|
|
| 154 |
|
|
| 155 |
|
def test_feature_plot_2D(): |
| 156 |
|
|
| 157 |
|
np.random.seed(seed=1) |
| 158 |
|
dataset = {'label': 250*['yes'] + 250*['no'], |
| 159 |
|
0: np.random.normal(0.5, 1, size=500), |
| 160 |
|
1: np.random.normal(1, 2, size=500), |
| 161 |
|
2: np.random.normal(3, 10, size=500) |
| 162 |
|
} |
| 163 |
|
df = pd.DataFrame(data=dataset) |
| 164 |
|
|
| 165 |
|
xy = pca.feature_plot_2D(df, label='label', features=[0, 1], randsel=True, |
| 166 |
|
fname='test1.png') |
| 167 |
|
# assert len(xy[1]) == 200 |
| 168 |
|
# assert os.path.isfile('test1.png') |
| 169 |
|
# |