@@ 174-186 (lines=13) @@ | ||
171 | # assert len(xy[1]) == 250 |
|
172 | ||
173 | ||
174 | def test_feature_plot_3D(): |
|
175 | ||
176 | np.random.seed(seed=1) |
|
177 | dataset = {'label': 250*['yes'] + 250*['no'], |
|
178 | 0: np.random.normal(0.5, 1, size=500), |
|
179 | 1: np.random.normal(1, 2, size=500), |
|
180 | 2: np.random.normal(3, 10, size=500) |
|
181 | } |
|
182 | df = pd.DataFrame(data=dataset) |
|
183 | ||
184 | xy = pca.feature_plot_3D(df, label='label', features=[0, 1, 2], |
|
185 | lvals=['yes', 'no'], randsel=True, |
|
186 | fname='test1.png') |
|
187 | # assert len(xy[1]) == 200 |
|
188 | # assert os.path.isfile('test1.png') |
|
189 | # |
|
@@ 155-166 (lines=12) @@ | ||
152 | assert np.round(np.mean(to_violin['Feature Value']), 1) == 2.1 |
|
153 | ||
154 | ||
155 | def test_feature_plot_2D(): |
|
156 | ||
157 | np.random.seed(seed=1) |
|
158 | dataset = {'label': 250*['yes'] + 250*['no'], |
|
159 | 0: np.random.normal(0.5, 1, size=500), |
|
160 | 1: np.random.normal(1, 2, size=500), |
|
161 | 2: np.random.normal(3, 10, size=500) |
|
162 | } |
|
163 | df = pd.DataFrame(data=dataset) |
|
164 | ||
165 | xy = pca.feature_plot_2D(df, label='label', features=[0, 1], randsel=True, |
|
166 | lvals=['yes', 'no'], fname='test1.png') |
|
167 | # assert len(xy[1]) == 200 |
|
168 | # assert os.path.isfile('test1.png') |
|
169 | # |