Code Duplication    Length = 18-20 lines in 4 locations

diff_classifier/tests/test_features.py 4 locations

@@ 213-232 (lines=20) @@
210
    assert ft.boundedness(df) == (0.039999999999999994, 1.0, -0.21501108474766228)
211
    
212
    
213
def test_efficiency():
214
    frames = 100
215
    d = {'Frame': np.linspace(0, frames, frames),
216
         'X': np.sin(np.linspace(0, frames, frames)+3),
217
         'Y': np.cos(np.linspace(0, frames, frames)+3),
218
         'Track_ID': np.ones(frames)}
219
    df = pd.DataFrame(data=d)
220
    df = msd.all_msds2(df, frames=frames+1)
221
    
222
    assert ft.efficiency(df) == (0.003548421265914009, 0.0059620286331768385)
223
    
224
    frames = 10
225
    d = {'Frame': np.linspace(0, frames, frames),
226
         'X': np.linspace(0, frames, frames)+5,
227
         'Y': np.linspace(0, frames, frames)+3,
228
         'Track_ID': np.ones(frames)}
229
    df = pd.DataFrame(data=d)
230
    df = msd.all_msds2(df, frames=frames+1)
231
    
232
    assert ft.efficiency(df) == (10.0, 1.0)
233
    
234
def test_msd_ratio():
235
    frames = 10
@@ 193-210 (lines=18) @@
190
    npt.assert_almost_equal(ft.aspectratio(df)[2], np.array([1.5, 1. ]))
191
192
    
193
def test_boundedness():
194
    frames = 100
195
    d = {'Frame': np.linspace(0, frames, frames),
196
         'X': np.sin(np.linspace(0, frames, frames)+3),
197
         'Y': np.cos(np.linspace(0, frames, frames)+3),
198
         'Track_ID': np.ones(frames)}
199
    df = pd.DataFrame(data=d)
200
    df = msd.all_msds2(df, frames=frames+1)
201
    assert ft.boundedness(df) == (0.607673328076712, 5.674370543833708, -0.0535555587618044)
202
203
    frames = 10
204
    d = {'Frame': np.linspace(0, frames, frames),
205
         'X': np.linspace(0, frames, frames)+5,
206
         'Y': np.linspace(0, frames, frames)+3,
207
         'Track_ID': np.ones(frames)}
208
    df = pd.DataFrame(data=d)
209
    df = msd.all_msds2(df, frames=frames+1)
210
    assert ft.boundedness(df) == (0.039999999999999994, 1.0, -0.21501108474766228)
211
    
212
    
213
def test_efficiency():
@@ 83-100 (lines=18) @@
80
    npt.assert_almost_equal(o4, d4)
81
82
83
def test_kurtosis():
84
    frames = 5
85
    d = {'Frame': np.linspace(0, frames, frames),
86
         'X': np.linspace(0, frames, frames)+5,
87
         'Y': np.linspace(0, frames, frames)+3,
88
         'Track_ID': np.ones(frames)}
89
    df = pd.DataFrame(data=d)
90
    df = msd.all_msds2(df, frames=frames+1)
91
    assert ft.kurtosis(df) == 4.079999999999999
92
93
    frames = 10
94
    d = {'Frame': np.linspace(0, frames, frames),
95
         'X': np.sin(np.linspace(0, frames, frames)+3),
96
         'Y': np.cos(np.linspace(0, frames, frames)+3),
97
         'Track_ID': np.ones(frames)}
98
    df = pd.DataFrame(data=d)
99
    df = msd.all_msds2(df, frames=frames+1)
100
    assert ft.kurtosis(df) == 1.4759027695843443
101
102
    
103
def test_asymmetry():
@@ 30-47 (lines=18) @@
27
28
    pdt.assert_frame_equal(ft.unmask_track(m_df[m_df['Track_ID']==2]), dft)
29
30
def test_alpha_calc():
31
    frames = 5
32
    d = {'Frame': np.linspace(0, frames, frames),
33
         'X': np.linspace(0, frames, frames)+5,
34
         'Y': np.linspace(0, frames, frames)+3,
35
         'Track_ID': np.ones(frames)}
36
    df = pd.DataFrame(data=d)
37
    df = msd.all_msds2(df, frames=frames+1)
38
    assert ft.alpha_calc(df) == (2.0000000000000004, 0.4999999999999998)
39
40
    frames = 10
41
    d = {'Frame': np.linspace(0, frames, frames),
42
         'X': np.sin(np.linspace(0, frames, frames)+5),
43
         'Y': np.cos(np.linspace(0, frames, frames)+3),
44
         'Track_ID': np.ones(frames)}
45
    df = pd.DataFrame(data=d)
46
    df = msd.all_msds2(df, frames=frames+1)
47
    assert ft.alpha_calc(df) == (0.8201034110620524, 0.1494342948594476)
48
    
49
50
def test_gyration_tensor():