|
@@ 213-232 (lines=20) @@
|
| 210 |
|
assert ft.boundedness(df) == (0.039999999999999994, 1.0, -0.21501108474766228) |
| 211 |
|
|
| 212 |
|
|
| 213 |
|
def test_efficiency(): |
| 214 |
|
frames = 100 |
| 215 |
|
d = {'Frame': np.linspace(0, frames, frames), |
| 216 |
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
| 217 |
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
| 218 |
|
'Track_ID': np.ones(frames)} |
| 219 |
|
df = pd.DataFrame(data=d) |
| 220 |
|
df = msd.all_msds2(df, frames=frames+1) |
| 221 |
|
|
| 222 |
|
assert ft.efficiency(df) == (0.003548421265914009, 0.0059620286331768385) |
| 223 |
|
|
| 224 |
|
frames = 10 |
| 225 |
|
d = {'Frame': np.linspace(0, frames, frames), |
| 226 |
|
'X': np.linspace(0, frames, frames)+5, |
| 227 |
|
'Y': np.linspace(0, frames, frames)+3, |
| 228 |
|
'Track_ID': np.ones(frames)} |
| 229 |
|
df = pd.DataFrame(data=d) |
| 230 |
|
df = msd.all_msds2(df, frames=frames+1) |
| 231 |
|
|
| 232 |
|
assert ft.efficiency(df) == (10.0, 1.0) |
| 233 |
|
|
| 234 |
|
def test_msd_ratio(): |
| 235 |
|
frames = 10 |
|
@@ 193-210 (lines=18) @@
|
| 190 |
|
npt.assert_almost_equal(ft.aspectratio(df)[2], np.array([1.5, 1. ])) |
| 191 |
|
|
| 192 |
|
|
| 193 |
|
def test_boundedness(): |
| 194 |
|
frames = 100 |
| 195 |
|
d = {'Frame': np.linspace(0, frames, frames), |
| 196 |
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
| 197 |
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
| 198 |
|
'Track_ID': np.ones(frames)} |
| 199 |
|
df = pd.DataFrame(data=d) |
| 200 |
|
df = msd.all_msds2(df, frames=frames+1) |
| 201 |
|
assert ft.boundedness(df) == (0.607673328076712, 5.674370543833708, -0.0535555587618044) |
| 202 |
|
|
| 203 |
|
frames = 10 |
| 204 |
|
d = {'Frame': np.linspace(0, frames, frames), |
| 205 |
|
'X': np.linspace(0, frames, frames)+5, |
| 206 |
|
'Y': np.linspace(0, frames, frames)+3, |
| 207 |
|
'Track_ID': np.ones(frames)} |
| 208 |
|
df = pd.DataFrame(data=d) |
| 209 |
|
df = msd.all_msds2(df, frames=frames+1) |
| 210 |
|
assert ft.boundedness(df) == (0.039999999999999994, 1.0, -0.21501108474766228) |
| 211 |
|
|
| 212 |
|
|
| 213 |
|
def test_efficiency(): |
|
@@ 83-100 (lines=18) @@
|
| 80 |
|
npt.assert_almost_equal(o4, d4) |
| 81 |
|
|
| 82 |
|
|
| 83 |
|
def test_kurtosis(): |
| 84 |
|
frames = 5 |
| 85 |
|
d = {'Frame': np.linspace(0, frames, frames), |
| 86 |
|
'X': np.linspace(0, frames, frames)+5, |
| 87 |
|
'Y': np.linspace(0, frames, frames)+3, |
| 88 |
|
'Track_ID': np.ones(frames)} |
| 89 |
|
df = pd.DataFrame(data=d) |
| 90 |
|
df = msd.all_msds2(df, frames=frames+1) |
| 91 |
|
assert ft.kurtosis(df) == 4.079999999999999 |
| 92 |
|
|
| 93 |
|
frames = 10 |
| 94 |
|
d = {'Frame': np.linspace(0, frames, frames), |
| 95 |
|
'X': np.sin(np.linspace(0, frames, frames)+3), |
| 96 |
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
| 97 |
|
'Track_ID': np.ones(frames)} |
| 98 |
|
df = pd.DataFrame(data=d) |
| 99 |
|
df = msd.all_msds2(df, frames=frames+1) |
| 100 |
|
assert ft.kurtosis(df) == 1.4759027695843443 |
| 101 |
|
|
| 102 |
|
|
| 103 |
|
def test_asymmetry(): |
|
@@ 30-47 (lines=18) @@
|
| 27 |
|
|
| 28 |
|
pdt.assert_frame_equal(ft.unmask_track(m_df[m_df['Track_ID']==2]), dft) |
| 29 |
|
|
| 30 |
|
def test_alpha_calc(): |
| 31 |
|
frames = 5 |
| 32 |
|
d = {'Frame': np.linspace(0, frames, frames), |
| 33 |
|
'X': np.linspace(0, frames, frames)+5, |
| 34 |
|
'Y': np.linspace(0, frames, frames)+3, |
| 35 |
|
'Track_ID': np.ones(frames)} |
| 36 |
|
df = pd.DataFrame(data=d) |
| 37 |
|
df = msd.all_msds2(df, frames=frames+1) |
| 38 |
|
assert ft.alpha_calc(df) == (2.0000000000000004, 0.4999999999999998) |
| 39 |
|
|
| 40 |
|
frames = 10 |
| 41 |
|
d = {'Frame': np.linspace(0, frames, frames), |
| 42 |
|
'X': np.sin(np.linspace(0, frames, frames)+5), |
| 43 |
|
'Y': np.cos(np.linspace(0, frames, frames)+3), |
| 44 |
|
'Track_ID': np.ones(frames)} |
| 45 |
|
df = pd.DataFrame(data=d) |
| 46 |
|
df = msd.all_msds2(df, frames=frames+1) |
| 47 |
|
assert ft.alpha_calc(df) == (0.8201034110620524, 0.1494342948594476) |
| 48 |
|
|
| 49 |
|
|
| 50 |
|
def test_gyration_tensor(): |