@@ 213-232 (lines=20) @@ | ||
210 | assert ft.boundedness(df) == (0.039999999999999994, 1.0, -0.21501108474766228) |
|
211 | ||
212 | ||
213 | def test_efficiency(): |
|
214 | frames = 100 |
|
215 | d = {'Frame': np.linspace(0, frames, frames), |
|
216 | 'X': np.sin(np.linspace(0, frames, frames)+3), |
|
217 | 'Y': np.cos(np.linspace(0, frames, frames)+3), |
|
218 | 'Track_ID': np.ones(frames)} |
|
219 | df = pd.DataFrame(data=d) |
|
220 | df = msd.all_msds2(df, frames=frames+1) |
|
221 | ||
222 | assert ft.efficiency(df) == (0.003548421265914009, 0.0059620286331768385) |
|
223 | ||
224 | frames = 10 |
|
225 | d = {'Frame': np.linspace(0, frames, frames), |
|
226 | 'X': np.linspace(0, frames, frames)+5, |
|
227 | 'Y': np.linspace(0, frames, frames)+3, |
|
228 | 'Track_ID': np.ones(frames)} |
|
229 | df = pd.DataFrame(data=d) |
|
230 | df = msd.all_msds2(df, frames=frames+1) |
|
231 | ||
232 | assert ft.efficiency(df) == (10.0, 1.0) |
|
233 | ||
234 | def test_msd_ratio(): |
|
235 | frames = 10 |
|
@@ 193-210 (lines=18) @@ | ||
190 | npt.assert_almost_equal(ft.aspectratio(df)[2], np.array([1.5, 1. ])) |
|
191 | ||
192 | ||
193 | def test_boundedness(): |
|
194 | frames = 100 |
|
195 | d = {'Frame': np.linspace(0, frames, frames), |
|
196 | 'X': np.sin(np.linspace(0, frames, frames)+3), |
|
197 | 'Y': np.cos(np.linspace(0, frames, frames)+3), |
|
198 | 'Track_ID': np.ones(frames)} |
|
199 | df = pd.DataFrame(data=d) |
|
200 | df = msd.all_msds2(df, frames=frames+1) |
|
201 | assert ft.boundedness(df) == (0.607673328076712, 5.674370543833708, -0.0535555587618044) |
|
202 | ||
203 | frames = 10 |
|
204 | d = {'Frame': np.linspace(0, frames, frames), |
|
205 | 'X': np.linspace(0, frames, frames)+5, |
|
206 | 'Y': np.linspace(0, frames, frames)+3, |
|
207 | 'Track_ID': np.ones(frames)} |
|
208 | df = pd.DataFrame(data=d) |
|
209 | df = msd.all_msds2(df, frames=frames+1) |
|
210 | assert ft.boundedness(df) == (0.039999999999999994, 1.0, -0.21501108474766228) |
|
211 | ||
212 | ||
213 | def test_efficiency(): |
|
@@ 83-100 (lines=18) @@ | ||
80 | npt.assert_almost_equal(o4, d4) |
|
81 | ||
82 | ||
83 | def test_kurtosis(): |
|
84 | frames = 5 |
|
85 | d = {'Frame': np.linspace(0, frames, frames), |
|
86 | 'X': np.linspace(0, frames, frames)+5, |
|
87 | 'Y': np.linspace(0, frames, frames)+3, |
|
88 | 'Track_ID': np.ones(frames)} |
|
89 | df = pd.DataFrame(data=d) |
|
90 | df = msd.all_msds2(df, frames=frames+1) |
|
91 | assert ft.kurtosis(df) == 4.079999999999999 |
|
92 | ||
93 | frames = 10 |
|
94 | d = {'Frame': np.linspace(0, frames, frames), |
|
95 | 'X': np.sin(np.linspace(0, frames, frames)+3), |
|
96 | 'Y': np.cos(np.linspace(0, frames, frames)+3), |
|
97 | 'Track_ID': np.ones(frames)} |
|
98 | df = pd.DataFrame(data=d) |
|
99 | df = msd.all_msds2(df, frames=frames+1) |
|
100 | assert ft.kurtosis(df) == 1.4759027695843443 |
|
101 | ||
102 | ||
103 | def test_asymmetry(): |
|
@@ 30-47 (lines=18) @@ | ||
27 | ||
28 | pdt.assert_frame_equal(ft.unmask_track(m_df[m_df['Track_ID']==2]), dft) |
|
29 | ||
30 | def test_alpha_calc(): |
|
31 | frames = 5 |
|
32 | d = {'Frame': np.linspace(0, frames, frames), |
|
33 | 'X': np.linspace(0, frames, frames)+5, |
|
34 | 'Y': np.linspace(0, frames, frames)+3, |
|
35 | 'Track_ID': np.ones(frames)} |
|
36 | df = pd.DataFrame(data=d) |
|
37 | df = msd.all_msds2(df, frames=frames+1) |
|
38 | assert ft.alpha_calc(df) == (2.0000000000000004, 0.4999999999999998) |
|
39 | ||
40 | frames = 10 |
|
41 | d = {'Frame': np.linspace(0, frames, frames), |
|
42 | 'X': np.sin(np.linspace(0, frames, frames)+5), |
|
43 | 'Y': np.cos(np.linspace(0, frames, frames)+3), |
|
44 | 'Track_ID': np.ones(frames)} |
|
45 | df = pd.DataFrame(data=d) |
|
46 | df = msd.all_msds2(df, frames=frames+1) |
|
47 | assert ft.alpha_calc(df) == (0.8201034110620524, 0.1494342948594476) |
|
48 | ||
49 | ||
50 | def test_gyration_tensor(): |