| Total Complexity | 1 |
| Total Lines | 51 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import tempfile |
||
| 2 | import pandas as pd |
||
| 3 | import diff_classifier.utils as ut |
||
| 4 | import sys |
||
| 5 | from io import StringIO |
||
| 6 | import pandas.util.testing as pdt |
||
| 7 | |||
| 8 | def test_csv_to_pd(): |
||
| 9 | tf = tempfile.NamedTemporaryFile(suffix=".csv") |
||
| 10 | fid = open(tf.name, 'w') |
||
| 11 | fid.write("This file won't work. \n This file won't work. \n This file won't work.") |
||
| 12 | fid.close() |
||
| 13 | |||
| 14 | stdout_ = sys.stdout |
||
| 15 | stream = StringIO() |
||
| 16 | sys.stdout = stream |
||
| 17 | test = ut.csv_to_pd(tf.name) |
||
| 18 | sys.stdout = stdout_ |
||
| 19 | variable = stream.getvalue() |
||
| 20 | test_string = 'No data in csv file.\n' |
||
| 21 | assert(variable==test_string) |
||
| 22 | |||
| 23 | d = {'Track_ID': [], |
||
| 24 | 'Spot_ID': [], |
||
| 25 | 'Frame': [], |
||
| 26 | 'X': [], |
||
| 27 | 'Y': [], |
||
| 28 | 'Quality': [], |
||
| 29 | 'SN_Ratio': [], |
||
| 30 | 'Mean_Intensity': []} |
||
| 31 | cols = ['Track_ID', 'Spot_ID', 'Frame', 'X', 'Y', 'Quality', 'SN_Ratio', 'Mean_Intensity'] |
||
| 32 | data = pd.DataFrame(data=d, index=[]) |
||
| 33 | data = data[cols] |
||
| 34 | data = data.astype('float64') |
||
| 35 | pdt.assert_frame_equal(test, data) |
||
| 36 | |||
| 37 | tf = tempfile.NamedTemporaryFile(suffix=".csv") |
||
| 38 | fid = open(tf.name, 'w') |
||
| 39 | fid.write('Found 0 tracks.\nData starts here.\nTrack_ID,Spot_ID,Frame,X,Y,Quality,SN_Ratio,Mean_Intensity\n') |
||
| 40 | fid.close() |
||
| 41 | |||
| 42 | stdout_ = sys.stdout |
||
| 43 | stream = StringIO() |
||
| 44 | sys.stdout = stream |
||
| 45 | test = ut.csv_to_pd(tf.name) |
||
| 46 | sys.stdout = stdout_ |
||
| 47 | variable = stream.getvalue() |
||
| 48 | test_string = '' |
||
| 49 | assert(variable==test_string) |
||
| 50 | pdt.assert_frame_equal(test, data) |
||
| 51 |