|
1
|
|
|
import pandas as pd |
|
2
|
|
|
import numpy as np |
|
3
|
|
|
import skimage.io as sio |
|
4
|
|
|
import numpy.ma as ma |
|
5
|
|
|
import pandas.util.testing as pdt |
|
6
|
|
|
import numpy.testing as npt |
|
7
|
|
|
import diff_classifier.msd as msd |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
def test_nth_diff(): |
|
11
|
|
|
|
|
12
|
|
|
data1 = {'col1': [1, 2, 3, 4, 5]} |
|
13
|
|
|
df = pd.DataFrame(data=data1) |
|
14
|
|
|
|
|
15
|
|
|
test_d = {'col1': [1, 1, 1, 1]} |
|
16
|
|
|
test_df = pd.DataFrame(data=test_d) |
|
17
|
|
|
|
|
18
|
|
|
pdt.assert_series_equal(msd.nth_diff(df['col1'], 1), test_df['col1']) |
|
19
|
|
|
|
|
20
|
|
|
# test2 |
|
21
|
|
|
df = np.ones((5, 10)) |
|
22
|
|
|
test_df = np.zeros((5, 9)) |
|
23
|
|
|
npt.assert_equal(msd.nth_diff(df, 1, 1), test_df) |
|
24
|
|
|
|
|
25
|
|
|
df = np.ones((5, 10)) |
|
26
|
|
|
test_df = np.zeros((4, 10)) |
|
27
|
|
|
npt.assert_equal(msd.nth_diff(df, 1, 0), test_df) |
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
|
|
def test_msd_calc(): |
|
31
|
|
|
|
|
32
|
|
|
data1 = {'Frame': [1, 2, 3, 4, 5], |
|
33
|
|
|
'X': [5, 6, 7, 8, 9], |
|
34
|
|
|
'Y': [6, 7, 8, 9, 10]} |
|
35
|
|
|
df = pd.DataFrame(data=data1) |
|
36
|
|
|
new_track = msd.msd_calc(df, 5) |
|
37
|
|
|
|
|
38
|
|
|
npt.assert_equal(np.array([0, 2, 8, 18, 32] |
|
39
|
|
|
).astype('float64'), new_track['MSDs']) |
|
40
|
|
|
npt.assert_equal(np.array([0, 0.25, 0.25, 0.25, 0.25] |
|
41
|
|
|
).astype('float64'), new_track['Gauss']) |
|
42
|
|
|
|
|
43
|
|
|
data1 = {'Frame': [1, 2, 3, 4, 5], |
|
44
|
|
|
'X': [5, 6, 7, 8, 9], |
|
45
|
|
|
'Y': [6, 7, 8, 9, 10]} |
|
46
|
|
|
df = pd.DataFrame(data=data1) |
|
47
|
|
|
new_track = msd.msd_calc(df) |
|
48
|
|
|
|
|
49
|
|
|
npt.assert_equal(np.array([0, 2, 8, 18, 32, np.nan, np.nan, np.nan, np.nan, |
|
50
|
|
|
np.nan]).astype('float64'), new_track['MSDs']) |
|
51
|
|
|
npt.assert_equal(np.array([0, 0.25, 0.25, 0.25, 0.25, np.nan, np.nan, |
|
52
|
|
|
np.nan, np.nan, np.nan] |
|
53
|
|
|
).astype('float64'), new_track['Gauss']) |
|
54
|
|
|
|
|
55
|
|
|
|
|
56
|
|
|
def test_all_msds(): |
|
57
|
|
|
|
|
58
|
|
|
data1 = {'Frame': [1, 2, 3, 4, 5, 1, 2, 3, 4, 5], |
|
59
|
|
|
'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], |
|
60
|
|
|
'X': [5, 6, 7, 8, 9, 1, 2, 3, 4, 5], |
|
61
|
|
|
'Y': [6, 7, 8, 9, 10, 2, 3, 4, 5, 6]} |
|
62
|
|
|
df = pd.DataFrame(data=data1) |
|
63
|
|
|
|
|
64
|
|
|
di = {'Frame': [float(i) for i in[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]], |
|
65
|
|
|
'Track_ID': [float(i) for i in[1, 1, 1, 1, 1, 2, 2, 2, 2, 2]], |
|
66
|
|
|
'X': [float(i) for i in[5, 6, 7, 8, 9, 1, 2, 3, 4, 5]], |
|
67
|
|
|
'Y': [float(i) for i in[6, 7, 8, 9, 10, 2, 3, 4, 5, 6]], |
|
68
|
|
|
'MSDs': [float(i) for i in[0, 2, 8, 18, 32, 0, 2, 8, 18, 32]], |
|
69
|
|
|
'Gauss': [0, 0.25, 0.25, 0.25, 0.25, 0, 0.25, 0.25, 0.25, 0.25]} |
|
70
|
|
|
cols = ['Frame', 'Track_ID', 'X', 'Y', 'MSDs', 'Gauss'] |
|
71
|
|
|
|
|
72
|
|
|
dfi = pd.DataFrame(data=di)[cols] |
|
73
|
|
|
|
|
74
|
|
|
pdt.assert_frame_equal(dfi, msd.all_msds(df)[cols]) |
|
75
|
|
|
|
|
76
|
|
|
|
|
77
|
|
|
def test_make_xyarray(): |
|
78
|
|
|
|
|
79
|
|
|
data1 = {'Frame': [0, 1, 2, 3, 4, 0, 1, 2, 3, 4], |
|
80
|
|
|
'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], |
|
81
|
|
|
'X': [5, 6, 7, 8, 9, 1, 2, 3, 4, 5], |
|
82
|
|
|
'Y': [6, 7, 8, 9, 10, 2, 3, 4, 5, 6], |
|
83
|
|
|
'Quality': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10], |
|
84
|
|
|
'SN_Ratio': [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], |
|
85
|
|
|
'Mean_Intensity': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]} |
|
86
|
|
|
df = pd.DataFrame(data=data1) |
|
87
|
|
|
|
|
88
|
|
|
length = max(df['Frame']) + 1 |
|
89
|
|
|
xyft = msd.make_xyarray(df, length=length) |
|
90
|
|
|
|
|
91
|
|
|
tt_array = np.array([[1, 2], [1, 2], [1, 2], [1, 2], [1, 2]]).astype(float) |
|
92
|
|
|
ft_array = np.array([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4]]).astype(float) |
|
93
|
|
|
xt_array = np.array([[5, 1], [6, 2], [7, 3], [8, 4], [9, 5]]).astype(float) |
|
94
|
|
|
yt_array = np.array([[6, 2], [7, 3], [8, 4], [9, 5], [10, 6]]).astype(float) |
|
95
|
|
|
|
|
96
|
|
|
npt.assert_equal(xyft['tarray'], tt_array) |
|
97
|
|
|
npt.assert_equal(xyft['farray'], ft_array) |
|
98
|
|
|
npt.assert_equal(xyft['xarray'], xt_array) |
|
99
|
|
|
npt.assert_equal(xyft['yarray'], yt_array) |
|
100
|
|
|
|
|
101
|
|
|
# Second test |
|
102
|
|
|
data1 = {'Frame': [0, 1, 2, 3, 4, 2, 3, 4, 5, 6], |
|
103
|
|
|
'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], |
|
104
|
|
|
'X': [5, 6, 7, 8, 9, 1, 2, 3, 4, 5], |
|
105
|
|
|
'Y': [6, 7, 8, 9, 10, 2, 3, 4, 5, 6], |
|
106
|
|
|
'Quality': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10], |
|
107
|
|
|
'SN_Ratio': [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], |
|
108
|
|
|
'Mean_Intensity': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]} |
|
109
|
|
|
df = pd.DataFrame(data=data1) |
|
110
|
|
|
|
|
111
|
|
|
length = max(df['Frame']) + 1 |
|
112
|
|
|
xyft = msd.make_xyarray(df, length=length) |
|
113
|
|
|
|
|
114
|
|
|
tt_array = np.array([[1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2]] |
|
115
|
|
|
).astype(float) |
|
116
|
|
|
ft_array = np.array([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6]] |
|
117
|
|
|
).astype(float) |
|
118
|
|
|
xt_array = np.array([[5, np.nan], [6, np.nan], [7, 1], [8, 2], [9, 3], |
|
119
|
|
|
[np.nan, 4], [np.nan, 5]]).astype(float) |
|
120
|
|
|
yt_array = np.array([[6, np.nan], [7, np.nan], [8, 2], [9, 3], [10, 4], |
|
121
|
|
|
[np.nan, 5], [np.nan, 6]]).astype(float) |
|
122
|
|
|
|
|
123
|
|
|
npt.assert_equal(xyft['tarray'], tt_array) |
|
124
|
|
|
npt.assert_equal(xyft['farray'], ft_array) |
|
125
|
|
|
npt.assert_equal(xyft['xarray'], xt_array) |
|
126
|
|
|
npt.assert_equal(xyft['yarray'], yt_array) |
|
127
|
|
|
|
|
128
|
|
|
|
|
129
|
|
|
def test_all_msds2(): |
|
130
|
|
|
|
|
131
|
|
|
data1 = {'Frame': [0, 1, 2, 3, 4, 0, 1, 2, 3, 4], |
|
132
|
|
|
'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], |
|
133
|
|
|
'X': [5, 6, 7, 8, 9, 1, 2, 3, 4, 5], |
|
134
|
|
|
'Y': [6, 7, 8, 9, 10, 2, 3, 4, 5, 6], |
|
135
|
|
|
'Quality': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10], |
|
136
|
|
|
'SN_Ratio': [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], |
|
137
|
|
|
'Mean_Intensity': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]} |
|
138
|
|
|
df = pd.DataFrame(data=data1) |
|
139
|
|
|
|
|
140
|
|
|
di = {'Frame': [float(i) for i in[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]], |
|
141
|
|
|
'Track_ID': [float(i) for i in[1, 1, 1, 1, 1, 2, 2, 2, 2, 2]], |
|
142
|
|
|
'X': [float(i) for i in[5, 6, 7, 8, 9, 1, 2, 3, 4, 5]], |
|
143
|
|
|
'Y': [float(i) for i in[6, 7, 8, 9, 10, 2, 3, 4, 5, 6]], |
|
144
|
|
|
'MSDs': [float(i) for i in[0, 2, 8, 18, 32, 0, 2, 8, 18, 32]], |
|
145
|
|
|
'Gauss': [0, 0.25, 0.25, 0.25, 0.25, 0, 0.25, 0.25, 0.25, 0.25], |
|
146
|
|
|
'Quality': [float(i) for i in[10, 10, 10, 10, 10, |
|
147
|
|
|
10, 10, 10, 10, 10]], |
|
148
|
|
|
'SN_Ratio': [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], |
|
149
|
|
|
'Mean_Intensity': [float(i) for i in[10, 10, 10, 10, 10, |
|
150
|
|
|
10, 10, 10, 10, 10]]} |
|
151
|
|
|
cols = ['Frame', 'Track_ID', 'X', 'Y', 'MSDs', 'Gauss', 'Quality', |
|
152
|
|
|
'SN_Ratio', 'Mean_Intensity'] |
|
153
|
|
|
|
|
154
|
|
|
dfi = pd.DataFrame(data=di)[cols] |
|
155
|
|
|
|
|
156
|
|
|
length = max(df['Frame']) + 1 |
|
157
|
|
|
pdt.assert_frame_equal(dfi, msd.all_msds2(df, frames=length)[cols]) |
|
158
|
|
|
|
|
159
|
|
|
|
|
160
|
|
|
def test_geomean_msdisp(): |
|
161
|
|
|
data1 = {'Frame': [1, 2, 3, 4, 5, 1, 2, 3, 4, 5], |
|
162
|
|
|
'Track_ID': [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], |
|
163
|
|
|
'X': [5, 6, 7, 8, 9, 1, 2, 3, 4, 5], |
|
164
|
|
|
'Y': [6, 7, 8, 9, 10, 2, 3, 4, 5, 6], |
|
165
|
|
|
'Quality': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10], |
|
166
|
|
|
'SN_Ratio': [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], |
|
167
|
|
|
'Mean_Intensity': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]} |
|
168
|
|
|
|
|
169
|
|
|
geomean_t = np.array([2., 8., 18., 32.]) |
|
170
|
|
|
geostder_t = np.array([]) |
|
171
|
|
|
df = pd.DataFrame(data=data1) |
|
172
|
|
|
msds = msd.all_msds2(df) |
|
173
|
|
|
msds.to_csv('msd_test.csv') |
|
174
|
|
|
|
|
175
|
|
|
geomean, geostder = msd.geomean_msdisp('test', umppx=1, fps=1, upload=False) |
|
176
|
|
|
npt.assert_equal(np.round(np.exp(geomean[geomean.mask == False].data), 1), |
|
177
|
|
|
geomean_t) |
|
178
|
|
|
npt.assert_equal(np.round(np.exp(geostder[geostder.mask == False].data), 1), |
|
179
|
|
|
geostder_t) |
|
180
|
|
|
|
|
181
|
|
|
# test 2 |
|
182
|
|
|
data1 = {'Frame': [1, 2, 1, 2], |
|
183
|
|
|
'Track_ID': [1, 1, 2, 2], |
|
184
|
|
|
'X': [1, 2, 3, 4], |
|
185
|
|
|
'Y': [1, 2, 3, 4], |
|
186
|
|
|
'Quality': [10, 10, 10, 10], |
|
187
|
|
|
'SN_Ratio': [0.1, 0.1, 0.1, 0.1], |
|
188
|
|
|
'Mean_Intensity': [10, 10, 10, 10]} |
|
189
|
|
|
df = pd.DataFrame(data=data1) |
|
190
|
|
|
msds = msd.all_msds2(df) |
|
191
|
|
|
msds.to_csv('msd_test.csv') |
|
192
|
|
|
geomean, geostder = msd.geomean_msdisp('test', umppx=1, fps=1, upload=False) |
|
193
|
|
|
npt.assert_equal(geomean, np.nan*np.ones(651)) |
|
194
|
|
|
npt.assert_equal(geostder, np.nan*np.ones(651)) |
|
195
|
|
|
|
|
196
|
|
|
# test 3 |
|
197
|
|
|
data1 = {'Frame': [1, 2, 3, 4, 5, 1, 2, 3, 4, 5], |
|
198
|
|
|
'Track_ID': [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], |
|
199
|
|
|
'X': [5, 6, 7, 8, 9, 2, 4, 6, 8, 10], |
|
200
|
|
|
'Y': [6, 7, 8, 9, 10, 6, 8, 10, 12, 14], |
|
201
|
|
|
'Quality': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10], |
|
202
|
|
|
'SN_Ratio': [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], |
|
203
|
|
|
'Mean_Intensity': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]} |
|
204
|
|
|
df = pd.DataFrame(data=data1) |
|
205
|
|
|
geomean_t = np.array([4., 16., 36., 64.]) |
|
206
|
|
|
geostder_t = np.array([2., 2., 2., 2]) |
|
207
|
|
|
msds = msd.all_msds2(df) |
|
208
|
|
|
msds.to_csv('msd_test.csv') |
|
209
|
|
|
|
|
210
|
|
|
geomean, geostder = msd.geomean_msdisp('test', umppx=1, fps=1, upload=False) |
|
211
|
|
|
npt.assert_equal(np.round(np.exp(geomean[geomean.mask == False].data), 1), |
|
212
|
|
|
geomean_t) |
|
213
|
|
|
npt.assert_equal(np.round(np.exp(geostder[geostder.mask == False].data), 1), |
|
214
|
|
|
geostder_t) |
|
215
|
|
|
|
|
216
|
|
|
|
|
217
|
|
|
def test_binning(): |
|
218
|
|
|
experiments = [] |
|
219
|
|
|
for num in range(8): |
|
|
|
|
|
|
220
|
|
|
experiments.append('test_{}'.format(num)) |
|
221
|
|
|
bins_t = {'test_W0': ['test_0', 'test_1'], |
|
222
|
|
|
'test_W1': ['test_2', 'test_3'], |
|
223
|
|
|
'test_W2': ['test_4', 'test_5'], |
|
224
|
|
|
'test_W3': ['test_6', 'test_7']} |
|
225
|
|
|
bin_names_t = ['test_W0', 'test_W1', 'test_W2', 'test_W3'] |
|
226
|
|
|
slices, bins, bin_names = msd.binning(experiments) |
|
227
|
|
|
|
|
228
|
|
|
assert slices == 2 |
|
229
|
|
|
assert bins == bins_t |
|
230
|
|
|
assert bin_names == bin_names_t |
|
231
|
|
|
|
|
232
|
|
|
|
|
233
|
|
|
def test_precision_weight(): |
|
234
|
|
|
experiments = [] |
|
235
|
|
|
geomean = {} |
|
236
|
|
|
geostder = {} |
|
237
|
|
|
for num in range(4): |
|
|
|
|
|
|
238
|
|
|
name = 'test_{}'.format(num) |
|
239
|
|
|
experiments.append(name) |
|
240
|
|
|
data1 = {'Frame': [1, 2, 3, 4, 5, 1, 2, 3, 4, 5], |
|
241
|
|
|
'Track_ID': [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], |
|
242
|
|
|
'X': [x*(num+1) for x in [5, 6, 7, 8, 9, 2, 4, 6, 8, 10]], |
|
243
|
|
|
'Y': [x*(num+1) for x in [6, 7, 8, 9, 10, 6, 8, 10, 12, 14]], |
|
244
|
|
|
'Quality': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10], |
|
245
|
|
|
'SN_Ratio': [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], |
|
246
|
|
|
'Mean_Intensity': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]} |
|
247
|
|
|
df = pd.DataFrame(data=data1) |
|
248
|
|
|
msds = msd.all_msds2(df) |
|
249
|
|
|
msds.to_csv('msd_test_{}.csv'.format(num)) |
|
250
|
|
|
geomean[name], geostder[name] = msd.geomean_msdisp(name, umppx=1, fps=1, |
|
251
|
|
|
upload=False) |
|
252
|
|
|
|
|
253
|
|
|
slices, bins, bin_names = msd.binning(experiments, wells=1) |
|
254
|
|
|
weights, w_holder = msd.precision_weight(experiments, geostder) |
|
255
|
|
|
weights_t = np.array([8.3, 8.3, 8.3, 8.3]) |
|
256
|
|
|
npt.assert_equal(np.round(weights[weights.mask == False].data, 1), |
|
257
|
|
|
weights_t) |
|
258
|
|
|
|
|
259
|
|
|
|
|
260
|
|
|
def test_precision_averaging(): |
|
261
|
|
|
experiments = [] |
|
262
|
|
|
geomean = {} |
|
263
|
|
|
geostder = {} |
|
264
|
|
|
for num in range(4): |
|
|
|
|
|
|
265
|
|
|
name = 'test_{}'.format(num) |
|
266
|
|
|
experiments.append(name) |
|
267
|
|
|
data1 = {'Frame': [1, 2, 3, 4, 5, 1, 2, 3, 4, 5], |
|
268
|
|
|
'Track_ID': [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], |
|
269
|
|
|
'X': [x*(num+1) for x in [5, 6, 7, 8, 9, 2, 4, 6, 8, 10]], |
|
270
|
|
|
'Y': [x*(num+1) for x in [6, 7, 8, 9, 10, 6, 8, 10, 12, 14]], |
|
271
|
|
|
'Quality': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10], |
|
272
|
|
|
'SN_Ratio': [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], |
|
273
|
|
|
'Mean_Intensity': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]} |
|
274
|
|
|
df = pd.DataFrame(data=data1) |
|
275
|
|
|
msds = msd.all_msds2(df) |
|
276
|
|
|
msds.to_csv('msd_test_{}.csv'.format(num)) |
|
277
|
|
|
geomean[name], geostder[name] = msd.geomean_msdisp(name, umppx=1, fps=1, |
|
278
|
|
|
upload=False) |
|
279
|
|
|
|
|
280
|
|
|
slices, bins, bin_names = msd.binning(experiments, wells=1) |
|
281
|
|
|
weights, w_holder = msd.precision_weight(experiments, geostder) |
|
282
|
|
|
geodata = msd.precision_averaging(experiments, geomean, geostder, weights, |
|
283
|
|
|
save=False) |
|
284
|
|
|
|
|
285
|
|
|
geostd_t = np.array([0.3, 0.3, 0.3, 0.3]) |
|
286
|
|
|
geo_t = np.array([19.6, 78.4, 176.4, 313.5]) |
|
287
|
|
|
npt.assert_equal(np.round(geodata.geostd[geodata.geostd.mask == False].data, |
|
288
|
|
|
1), geostd_t) |
|
289
|
|
|
npt.assert_equal(np.round( |
|
290
|
|
|
np.exp(geodata.geomean[ |
|
291
|
|
|
geodata.geomean.mask == False].data), 1), geo_t) |
|
292
|
|
|
|
|
293
|
|
|
|
|
294
|
|
|
def test_random_walk(): |
|
295
|
|
|
xi = np.array([0., 1., 2., 2., 1.]) |
|
296
|
|
|
yi = np.array([0., 0., 0., 1., 1.]) |
|
297
|
|
|
x, y = msd.random_walk(nsteps=5) |
|
298
|
|
|
npt.assert_equal(xi, x) |
|
299
|
|
|
npt.assert_equal(yi, y) |
|
300
|
|
|
|
|
301
|
|
|
|
|
302
|
|
|
def test_random_traj_dataset(): |
|
303
|
|
|
di = {'Frame': [float(i) for i in[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]], |
|
304
|
|
|
'Track_ID': [float(i) for i in[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]], |
|
305
|
|
|
'X': np.array([1., 1.93045975532, 1.0, 1.0, 1.0, 0.0, 0.288183500979, 0.576367001958, |
|
306
|
|
|
0.864550502937, 0.864550502937]), |
|
307
|
|
|
'Y': np.array([1., 1., 1., 0.06954024468115816, 1.0, 4.0, 4.0, 4.0, 4.0, 4.288183500978857 |
|
308
|
|
|
]), |
|
309
|
|
|
'Quality': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10], |
|
310
|
|
|
'SN_Ratio': [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], |
|
311
|
|
|
'Mean_Intensity': [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]} |
|
312
|
|
|
cols = ['Frame', 'Track_ID', 'X', 'Y'] |
|
313
|
|
|
dfi = pd.DataFrame(data=di)[cols] |
|
314
|
|
|
|
|
315
|
|
|
pdt.assert_frame_equal(dfi, msd.random_traj_dataset(nframes=5, nparts=2, |
|
316
|
|
|
fsize=(0, 5))[cols]) |
|
317
|
|
|
|
|
318
|
|
|
|
|
319
|
|
|
def test_plot_all_experiments(): |
|
320
|
|
|
print('To do later.') |
|
321
|
|
|
|