| Total Complexity | 471 |
| Total Lines | 3670 |
| Duplicated Lines | 0 % |
| Changes | 1 | ||
| Bugs | 0 | Features | 0 |
Complex classes like BigInteger often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use BigInteger, and based on these observations, apply Extract Interface, too.
| 1 | <?php |
||
| 63 | class BigInteger |
||
| 64 | { |
||
| 65 | /**#@+ |
||
| 66 | * Reduction constants |
||
| 67 | * |
||
| 68 | * @access private |
||
| 69 | * @see BigInteger::_reduce() |
||
| 70 | */ |
||
| 71 | /** |
||
| 72 | * @see BigInteger::_montgomery() |
||
| 73 | * @see BigInteger::_prepMontgomery() |
||
| 74 | */ |
||
| 75 | public const MONTGOMERY = 0; |
||
| 76 | /** |
||
| 77 | * @see BigInteger::_barrett() |
||
| 78 | */ |
||
| 79 | public const BARRETT = 1; |
||
| 80 | /** |
||
| 81 | * @see BigInteger::_mod2() |
||
| 82 | */ |
||
| 83 | public const POWEROF2 = 2; |
||
| 84 | /** |
||
| 85 | * @see BigInteger::_remainder() |
||
| 86 | */ |
||
| 87 | public const CLASSIC = 3; |
||
| 88 | /** |
||
| 89 | * @see BigInteger::__clone() |
||
| 90 | */ |
||
| 91 | public const NONE = 4; |
||
| 92 | /**#@-*/ |
||
| 93 | |||
| 94 | /**#@+ |
||
| 95 | * Array constants |
||
| 96 | * |
||
| 97 | * Rather than create a thousands and thousands of new BigInteger objects in repeated function calls to add() and |
||
| 98 | * multiply() or whatever, we'll just work directly on arrays, taking them in as parameters and returning them. |
||
| 99 | * |
||
| 100 | * @access private |
||
| 101 | */ |
||
| 102 | /** |
||
| 103 | * $result[self::VALUE] contains the value. |
||
| 104 | */ |
||
| 105 | public const VALUE = 0; |
||
| 106 | /** |
||
| 107 | * $result[self::SIGN] contains the sign. |
||
| 108 | */ |
||
| 109 | public const SIGN = 1; |
||
| 110 | /**#@-*/ |
||
| 111 | |||
| 112 | /**#@+ |
||
| 113 | * @access private |
||
| 114 | * @see BigInteger::_montgomery() |
||
| 115 | * @see BigInteger::_barrett() |
||
| 116 | */ |
||
| 117 | /** |
||
| 118 | * Cache constants |
||
| 119 | * |
||
| 120 | * $cache[self::VARIABLE] tells us whether or not the cached data is still valid. |
||
| 121 | */ |
||
| 122 | public const VARIABLE = 0; |
||
| 123 | /** |
||
| 124 | * $cache[self::DATA] contains the cached data. |
||
| 125 | */ |
||
| 126 | public const DATA = 1; |
||
| 127 | /**#@-*/ |
||
| 128 | |||
| 129 | /**#@+ |
||
| 130 | * Mode constants. |
||
| 131 | * |
||
| 132 | * @access private |
||
| 133 | * @see BigInteger::__construct() |
||
| 134 | */ |
||
| 135 | /** |
||
| 136 | * To use the pure-PHP implementation |
||
| 137 | */ |
||
| 138 | public const MODE_INTERNAL = 1; |
||
| 139 | /** |
||
| 140 | * To use the BCMath library |
||
| 141 | * |
||
| 142 | * (if enabled; otherwise, the internal implementation will be used) |
||
| 143 | */ |
||
| 144 | public const MODE_BCMATH = 2; |
||
| 145 | /** |
||
| 146 | * To use the GMP library |
||
| 147 | * |
||
| 148 | * (if present; otherwise, either the BCMath or the internal implementation will be used) |
||
| 149 | */ |
||
| 150 | public const MODE_GMP = 3; |
||
| 151 | /**#@-*/ |
||
| 152 | |||
| 153 | /** |
||
| 154 | * Karatsuba Cutoff |
||
| 155 | * |
||
| 156 | * At what point do we switch between Karatsuba multiplication and schoolbook long multiplication? |
||
| 157 | * |
||
| 158 | * @access private |
||
| 159 | */ |
||
| 160 | public const KARATSUBA_CUTOFF = 25; |
||
| 161 | |||
| 162 | /**#@+ |
||
| 163 | * Static properties used by the pure-PHP implementation. |
||
| 164 | * |
||
| 165 | * @see __construct() |
||
| 166 | */ |
||
| 167 | protected static $base; |
||
| 168 | protected static $baseFull; |
||
| 169 | protected static $maxDigit; |
||
| 170 | protected static $msb; |
||
| 171 | |||
| 172 | /** |
||
| 173 | * $max10 in greatest $max10Len satisfying |
||
| 174 | * $max10 = 10**$max10Len <= 2**$base. |
||
| 175 | */ |
||
| 176 | protected static $max10; |
||
| 177 | |||
| 178 | /** |
||
| 179 | * $max10Len in greatest $max10Len satisfying |
||
| 180 | * $max10 = 10**$max10Len <= 2**$base. |
||
| 181 | */ |
||
| 182 | protected static $max10Len; |
||
| 183 | protected static $maxDigit2; |
||
| 184 | /**#@-*/ |
||
| 185 | |||
| 186 | /** |
||
| 187 | * Holds the BigInteger's value. |
||
| 188 | * |
||
| 189 | * @var array |
||
| 190 | * @access private |
||
| 191 | */ |
||
| 192 | public $value; |
||
| 193 | |||
| 194 | /** |
||
| 195 | * Holds the BigInteger's magnitude. |
||
| 196 | * |
||
| 197 | * @var bool |
||
| 198 | * @access private |
||
| 199 | */ |
||
| 200 | public $is_negative = false; |
||
| 201 | |||
| 202 | /** |
||
| 203 | * Precision |
||
| 204 | * |
||
| 205 | * @see self::setPrecision() |
||
| 206 | * @access private |
||
| 207 | */ |
||
| 208 | public $precision = -1; |
||
| 209 | |||
| 210 | /** |
||
| 211 | * Precision Bitmask |
||
| 212 | * |
||
| 213 | * @see self::setPrecision() |
||
| 214 | * @access private |
||
| 215 | */ |
||
| 216 | public $bitmask = false; |
||
| 217 | |||
| 218 | /** |
||
| 219 | * Mode independent value used for serialization. |
||
| 220 | * |
||
| 221 | * If the bcmath or gmp extensions are installed $this->value will be a non-serializable resource, hence the need for |
||
| 222 | * a variable that'll be serializable regardless of whether or not extensions are being used. Unlike $this->value, |
||
| 223 | * however, $this->hex is only calculated when $this->__sleep() is called. |
||
| 224 | * |
||
| 225 | * @see self::__sleep() |
||
| 226 | * @see self::__wakeup() |
||
| 227 | * @var string |
||
| 228 | * @access private |
||
| 229 | */ |
||
| 230 | public $hex; |
||
| 231 | |||
| 232 | /** |
||
| 233 | * Converts base-2, base-10, base-16, and binary strings (base-256) to BigIntegers. |
||
| 234 | * |
||
| 235 | * If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using |
||
| 236 | * two's compliment. The sole exception to this is -10, which is treated the same as 10 is. |
||
| 237 | * |
||
| 238 | * Here's an example: |
||
| 239 | * <code> |
||
| 240 | * <?php |
||
| 241 | * $a = new \phpseclib\Math\BigInteger('0x32', 16); // 50 in base-16 |
||
| 242 | * |
||
| 243 | * echo $a->toString(); // outputs 50 |
||
| 244 | * ?> |
||
| 245 | * </code> |
||
| 246 | * |
||
| 247 | * @param $x base-10 number or base-$base number if $base set. |
||
|
|
|||
| 248 | * @param int $base |
||
| 249 | * @return \phpseclib\Math\BigInteger |
||
| 250 | * @access public |
||
| 251 | */ |
||
| 252 | public function __construct($x = 0, $base = 10) |
||
| 253 | { |
||
| 254 | if (!defined('MATH_BIGINTEGER_MODE')) { |
||
| 255 | switch (true) { |
||
| 256 | case extension_loaded('gmp'): |
||
| 257 | define('MATH_BIGINTEGER_MODE', self::MODE_GMP); |
||
| 258 | break; |
||
| 259 | case extension_loaded('bcmath'): |
||
| 260 | define('MATH_BIGINTEGER_MODE', self::MODE_BCMATH); |
||
| 261 | break; |
||
| 262 | default: |
||
| 263 | define('MATH_BIGINTEGER_MODE', self::MODE_INTERNAL); |
||
| 264 | } |
||
| 265 | } |
||
| 266 | |||
| 267 | if (extension_loaded('openssl') && !defined('MATH_BIGINTEGER_OPENSSL_DISABLE') && !defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) { |
||
| 268 | // some versions of XAMPP have mismatched versions of OpenSSL which causes it not to work |
||
| 269 | define('MATH_BIGINTEGER_OPENSSL_ENABLED', true); |
||
| 270 | } |
||
| 271 | |||
| 272 | if (!defined('PHP_INT_SIZE')) { |
||
| 273 | define('PHP_INT_SIZE', 4); |
||
| 274 | } |
||
| 275 | |||
| 276 | if (empty(self::$base) && MATH_BIGINTEGER_MODE == self::MODE_INTERNAL) { |
||
| 277 | switch (PHP_INT_SIZE) { |
||
| 278 | case 8: // use 64-bit integers if int size is 8 bytes |
||
| 279 | self::$base = 31; |
||
| 280 | self::$baseFull = 0x80000000; |
||
| 281 | self::$maxDigit = 0x7FFFFFFF; |
||
| 282 | self::$msb = 0x40000000; |
||
| 283 | self::$max10 = 1000000000; |
||
| 284 | self::$max10Len = 9; |
||
| 285 | self::$maxDigit2 = pow(2, 62); |
||
| 286 | break; |
||
| 287 | //case 4: // use 64-bit floats if int size is 4 bytes |
||
| 288 | default: |
||
| 289 | self::$base = 26; |
||
| 290 | self::$baseFull = 0x4000000; |
||
| 291 | self::$maxDigit = 0x3FFFFFF; |
||
| 292 | self::$msb = 0x2000000; |
||
| 293 | self::$max10 = 10000000; |
||
| 294 | self::$max10Len = 7; |
||
| 295 | self::$maxDigit2 = pow(2, 52); // pow() prevents truncation |
||
| 296 | } |
||
| 297 | } |
||
| 298 | |||
| 299 | switch (MATH_BIGINTEGER_MODE) { |
||
| 300 | case self::MODE_GMP: |
||
| 301 | switch (true) { |
||
| 302 | case is_resource($x) && get_resource_type($x) == 'GMP integer': |
||
| 303 | // PHP 5.6 switched GMP from using resources to objects |
||
| 304 | case $x instanceof \GMP: |
||
| 305 | $this->value = $x; |
||
| 306 | return; |
||
| 307 | } |
||
| 308 | $this->value = gmp_init(0); |
||
| 309 | break; |
||
| 310 | case self::MODE_BCMATH: |
||
| 311 | $this->value = '0'; |
||
| 312 | break; |
||
| 313 | default: |
||
| 314 | $this->value = array(); |
||
| 315 | } |
||
| 316 | |||
| 317 | // '0' counts as empty() but when the base is 256 '0' is equal to ord('0') or 48 |
||
| 318 | // '0' is the only value like this per http://php.net/empty |
||
| 319 | if (empty($x) && (abs($base) != 256 || $x !== '0')) { |
||
| 320 | return; |
||
| 321 | } |
||
| 322 | |||
| 323 | switch ($base) { |
||
| 324 | case -256: |
||
| 325 | if (ord($x[0]) & 0x80) { |
||
| 326 | $x = ~$x; |
||
| 327 | $this->is_negative = true; |
||
| 328 | } |
||
| 329 | // no break |
||
| 330 | case 256: |
||
| 331 | switch (MATH_BIGINTEGER_MODE) { |
||
| 332 | case self::MODE_GMP: |
||
| 333 | $sign = $this->is_negative ? '-' : ''; |
||
| 334 | $this->value = gmp_init($sign . '0x' . bin2hex($x)); |
||
| 335 | break; |
||
| 336 | case self::MODE_BCMATH: |
||
| 337 | // round $len to the nearest 4 (thanks, DavidMJ!) |
||
| 338 | $len = (strlen($x) + 3) & 0xFFFFFFFC; |
||
| 339 | |||
| 340 | $x = str_pad($x, $len, chr(0), STR_PAD_LEFT); |
||
| 341 | |||
| 342 | for ($i = 0; $i < $len; $i+= 4) { |
||
| 343 | $this->value = bcmul($this->value, '4294967296', 0); // 4294967296 == 2**32 |
||
| 344 | $this->value = bcadd($this->value, 0x1000000 * ord($x[$i]) + ((ord($x[$i + 1]) << 16) | (ord($x[$i + 2]) << 8) | ord($x[$i + 3])), 0); |
||
| 345 | } |
||
| 346 | |||
| 347 | if ($this->is_negative) { |
||
| 348 | $this->value = '-' . $this->value; |
||
| 349 | } |
||
| 350 | |||
| 351 | break; |
||
| 352 | // converts a base-2**8 (big endian / msb) number to base-2**26 (little endian / lsb) |
||
| 353 | default: |
||
| 354 | while (strlen($x)) { |
||
| 355 | $this->value[] = $this->_bytes2int($this->_base256_rshift($x, self::$base)); |
||
| 356 | } |
||
| 357 | } |
||
| 358 | |||
| 359 | if ($this->is_negative) { |
||
| 360 | if (MATH_BIGINTEGER_MODE != self::MODE_INTERNAL) { |
||
| 361 | $this->is_negative = false; |
||
| 362 | } |
||
| 363 | $temp = $this->add(new static('-1')); |
||
| 364 | $this->value = $temp->value; |
||
| 365 | } |
||
| 366 | break; |
||
| 367 | case 16: |
||
| 368 | case -16: |
||
| 369 | if ($base > 0 && $x[0] == '-') { |
||
| 370 | $this->is_negative = true; |
||
| 371 | $x = substr($x, 1); |
||
| 372 | } |
||
| 373 | |||
| 374 | $x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x); |
||
| 375 | |||
| 376 | $is_negative = false; |
||
| 377 | if ($base < 0 && hexdec($x[0]) >= 8) { |
||
| 378 | $this->is_negative = $is_negative = true; |
||
| 379 | $x = bin2hex(~pack('H*', $x)); |
||
| 380 | } |
||
| 381 | |||
| 382 | switch (MATH_BIGINTEGER_MODE) { |
||
| 383 | case self::MODE_GMP: |
||
| 384 | $temp = $this->is_negative ? '-0x' . $x : '0x' . $x; |
||
| 385 | $this->value = gmp_init($temp); |
||
| 386 | $this->is_negative = false; |
||
| 387 | break; |
||
| 388 | case self::MODE_BCMATH: |
||
| 389 | $x = (strlen($x) & 1) ? '0' . $x : $x; |
||
| 390 | $temp = new static(pack('H*', $x), 256); |
||
| 391 | $this->value = $this->is_negative ? '-' . $temp->value : $temp->value; |
||
| 392 | $this->is_negative = false; |
||
| 393 | break; |
||
| 394 | default: |
||
| 395 | $x = (strlen($x) & 1) ? '0' . $x : $x; |
||
| 396 | $temp = new static(pack('H*', $x), 256); |
||
| 397 | $this->value = $temp->value; |
||
| 398 | } |
||
| 399 | |||
| 400 | if ($is_negative) { |
||
| 401 | $temp = $this->add(new static('-1')); |
||
| 402 | $this->value = $temp->value; |
||
| 403 | } |
||
| 404 | break; |
||
| 405 | case 10: |
||
| 406 | case -10: |
||
| 407 | // (?<!^)(?:-).*: find any -'s that aren't at the beginning and then any characters that follow that |
||
| 408 | // (?<=^|-)0*: find any 0's that are preceded by the start of the string or by a - (ie. octals) |
||
| 409 | // [^-0-9].*: find any non-numeric characters and then any characters that follow that |
||
| 410 | $x = preg_replace('#(?<!^)(?:-).*|(?<=^|-)0*|[^-0-9].*#', '', $x); |
||
| 411 | |||
| 412 | switch (MATH_BIGINTEGER_MODE) { |
||
| 413 | case self::MODE_GMP: |
||
| 414 | $this->value = gmp_init($x); |
||
| 415 | break; |
||
| 416 | case self::MODE_BCMATH: |
||
| 417 | // explicitly casting $x to a string is necessary, here, since doing $x[0] on -1 yields different |
||
| 418 | // results then doing it on '-1' does (modInverse does $x[0]) |
||
| 419 | $this->value = $x === '-' ? '0' : (string) $x; |
||
| 420 | break; |
||
| 421 | default: |
||
| 422 | $temp = new static(); |
||
| 423 | |||
| 424 | $multiplier = new static(); |
||
| 425 | $multiplier->value = array(self::$max10); |
||
| 426 | |||
| 427 | if ($x[0] == '-') { |
||
| 428 | $this->is_negative = true; |
||
| 429 | $x = substr($x, 1); |
||
| 430 | } |
||
| 431 | |||
| 432 | $x = str_pad($x, strlen($x) + ((self::$max10Len - 1) * strlen($x)) % self::$max10Len, 0, STR_PAD_LEFT); |
||
| 433 | while (strlen($x)) { |
||
| 434 | $temp = $temp->multiply($multiplier); |
||
| 435 | $temp = $temp->add(new static($this->_int2bytes(substr($x, 0, self::$max10Len)), 256)); |
||
| 436 | $x = substr($x, self::$max10Len); |
||
| 437 | } |
||
| 438 | |||
| 439 | $this->value = $temp->value; |
||
| 440 | } |
||
| 441 | break; |
||
| 442 | case 2: // base-2 support originally implemented by Lluis Pamies - thanks! |
||
| 443 | case -2: |
||
| 444 | if ($base > 0 && $x[0] == '-') { |
||
| 445 | $this->is_negative = true; |
||
| 446 | $x = substr($x, 1); |
||
| 447 | } |
||
| 448 | |||
| 449 | $x = preg_replace('#^([01]*).*#', '$1', $x); |
||
| 450 | $x = str_pad($x, strlen($x) + (3 * strlen($x)) % 4, 0, STR_PAD_LEFT); |
||
| 451 | |||
| 452 | $str = '0x'; |
||
| 453 | while (strlen($x)) { |
||
| 454 | $part = substr($x, 0, 4); |
||
| 455 | $str.= dechex(bindec($part)); |
||
| 456 | $x = substr($x, 4); |
||
| 457 | } |
||
| 458 | |||
| 459 | if ($this->is_negative) { |
||
| 460 | $str = '-' . $str; |
||
| 461 | } |
||
| 462 | |||
| 463 | $temp = new static($str, 8 * $base); // ie. either -16 or +16 |
||
| 464 | $this->value = $temp->value; |
||
| 465 | $this->is_negative = $temp->is_negative; |
||
| 466 | |||
| 467 | break; |
||
| 468 | default: |
||
| 469 | // base not supported, so we'll let $this == 0 |
||
| 470 | } |
||
| 471 | } |
||
| 472 | |||
| 473 | /** |
||
| 474 | * Converts a BigInteger to a byte string (eg. base-256). |
||
| 475 | * |
||
| 476 | * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
||
| 477 | * saved as two's compliment. |
||
| 478 | * |
||
| 479 | * Here's an example: |
||
| 480 | * <code> |
||
| 481 | * <?php |
||
| 482 | * $a = new \phpseclib\Math\BigInteger('65'); |
||
| 483 | * |
||
| 484 | * echo $a->toBytes(); // outputs chr(65) |
||
| 485 | * ?> |
||
| 486 | * </code> |
||
| 487 | * |
||
| 488 | * @param bool $twos_compliment |
||
| 489 | * @return string |
||
| 490 | * @access public |
||
| 491 | * @internal Converts a base-2**26 number to base-2**8 |
||
| 492 | */ |
||
| 493 | public function toBytes($twos_compliment = false) |
||
| 494 | { |
||
| 495 | if ($twos_compliment) { |
||
| 496 | $comparison = $this->compare(new static()); |
||
| 497 | if ($comparison == 0) { |
||
| 498 | return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : ''; |
||
| 499 | } |
||
| 500 | |||
| 501 | $temp = $comparison < 0 ? $this->add(new static(1)) : $this->copy(); |
||
| 502 | $bytes = $temp->toBytes(); |
||
| 503 | |||
| 504 | if (empty($bytes)) { // eg. if the number we're trying to convert is -1 |
||
| 505 | $bytes = chr(0); |
||
| 506 | } |
||
| 507 | |||
| 508 | if (ord($bytes[0]) & 0x80) { |
||
| 509 | $bytes = chr(0) . $bytes; |
||
| 510 | } |
||
| 511 | |||
| 512 | return $comparison < 0 ? ~$bytes : $bytes; |
||
| 513 | } |
||
| 514 | |||
| 515 | switch (MATH_BIGINTEGER_MODE) { |
||
| 516 | case self::MODE_GMP: |
||
| 517 | if (gmp_cmp($this->value, gmp_init(0)) == 0) { |
||
| 518 | return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : ''; |
||
| 519 | } |
||
| 520 | |||
| 521 | $temp = gmp_strval(gmp_abs($this->value), 16); |
||
| 522 | $temp = (strlen($temp) & 1) ? '0' . $temp : $temp; |
||
| 523 | $temp = pack('H*', $temp); |
||
| 524 | |||
| 525 | return $this->precision > 0 ? |
||
| 526 | substr(str_pad($temp, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) : |
||
| 527 | ltrim($temp, chr(0)); |
||
| 528 | case self::MODE_BCMATH: |
||
| 529 | if ($this->value === '0') { |
||
| 530 | return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : ''; |
||
| 531 | } |
||
| 532 | |||
| 533 | $value = ''; |
||
| 534 | $current = $this->value; |
||
| 535 | |||
| 536 | if ($current[0] == '-') { |
||
| 537 | $current = substr($current, 1); |
||
| 538 | } |
||
| 539 | |||
| 540 | while (bccomp($current, '0', 0) > 0) { |
||
| 541 | $temp = bcmod($current, '16777216'); |
||
| 542 | $value = chr($temp >> 16) . chr($temp >> 8) . chr($temp) . $value; |
||
| 543 | $current = bcdiv($current, '16777216', 0); |
||
| 544 | } |
||
| 545 | |||
| 546 | return $this->precision > 0 ? |
||
| 547 | substr(str_pad($value, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) : |
||
| 548 | ltrim($value, chr(0)); |
||
| 549 | } |
||
| 550 | |||
| 551 | if (!count($this->value)) { |
||
| 552 | return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : ''; |
||
| 553 | } |
||
| 554 | $result = $this->_int2bytes($this->value[count($this->value) - 1]); |
||
| 555 | |||
| 556 | $temp = $this->copy(); |
||
| 557 | |||
| 558 | for ($i = count($temp->value) - 2; $i >= 0; --$i) { |
||
| 559 | $temp->_base256_lshift($result, self::$base); |
||
| 560 | $result = $result | str_pad($temp->_int2bytes($temp->value[$i]), strlen($result), chr(0), STR_PAD_LEFT); |
||
| 561 | } |
||
| 562 | |||
| 563 | return $this->precision > 0 ? |
||
| 564 | str_pad(substr($result, -(($this->precision + 7) >> 3)), ($this->precision + 7) >> 3, chr(0), STR_PAD_LEFT) : |
||
| 565 | $result; |
||
| 566 | } |
||
| 567 | |||
| 568 | /** |
||
| 569 | * Converts a BigInteger to a hex string (eg. base-16)). |
||
| 570 | * |
||
| 571 | * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
||
| 572 | * saved as two's compliment. |
||
| 573 | * |
||
| 574 | * Here's an example: |
||
| 575 | * <code> |
||
| 576 | * <?php |
||
| 577 | * $a = new \phpseclib\Math\BigInteger('65'); |
||
| 578 | * |
||
| 579 | * echo $a->toHex(); // outputs '41' |
||
| 580 | * ?> |
||
| 581 | * </code> |
||
| 582 | * |
||
| 583 | * @param bool $twos_compliment |
||
| 584 | * @return string |
||
| 585 | * @access public |
||
| 586 | * @internal Converts a base-2**26 number to base-2**8 |
||
| 587 | */ |
||
| 588 | public function toHex($twos_compliment = false) |
||
| 589 | { |
||
| 590 | return bin2hex($this->toBytes($twos_compliment)); |
||
| 591 | } |
||
| 592 | |||
| 593 | /** |
||
| 594 | * Converts a BigInteger to a bit string (eg. base-2). |
||
| 595 | * |
||
| 596 | * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
||
| 597 | * saved as two's compliment. |
||
| 598 | * |
||
| 599 | * Here's an example: |
||
| 600 | * <code> |
||
| 601 | * <?php |
||
| 602 | * $a = new \phpseclib\Math\BigInteger('65'); |
||
| 603 | * |
||
| 604 | * echo $a->toBits(); // outputs '1000001' |
||
| 605 | * ?> |
||
| 606 | * </code> |
||
| 607 | * |
||
| 608 | * @param bool $twos_compliment |
||
| 609 | * @return string |
||
| 610 | * @access public |
||
| 611 | * @internal Converts a base-2**26 number to base-2**2 |
||
| 612 | */ |
||
| 613 | public function toBits($twos_compliment = false) |
||
| 614 | { |
||
| 615 | $hex = $this->toHex($twos_compliment); |
||
| 616 | $bits = ''; |
||
| 617 | for ($i = strlen($hex) - 8, $start = strlen($hex) & 7; $i >= $start; $i-=8) { |
||
| 618 | $bits = str_pad(decbin(hexdec(substr($hex, $i, 8))), 32, '0', STR_PAD_LEFT) . $bits; |
||
| 619 | } |
||
| 620 | if ($start) { // hexdec('') == 0 |
||
| 621 | $bits = str_pad(decbin(hexdec(substr($hex, 0, $start))), 8, '0', STR_PAD_LEFT) . $bits; |
||
| 622 | } |
||
| 623 | $result = $this->precision > 0 ? substr($bits, -$this->precision) : ltrim($bits, '0'); |
||
| 624 | |||
| 625 | if ($twos_compliment && $this->compare(new static()) > 0 && $this->precision <= 0) { |
||
| 626 | return '0' . $result; |
||
| 627 | } |
||
| 628 | |||
| 629 | return $result; |
||
| 630 | } |
||
| 631 | |||
| 632 | /** |
||
| 633 | * Converts a BigInteger to a base-10 number. |
||
| 634 | * |
||
| 635 | * Here's an example: |
||
| 636 | * <code> |
||
| 637 | * <?php |
||
| 638 | * $a = new \phpseclib\Math\BigInteger('50'); |
||
| 639 | * |
||
| 640 | * echo $a->toString(); // outputs 50 |
||
| 641 | * ?> |
||
| 642 | * </code> |
||
| 643 | * |
||
| 644 | * @return string |
||
| 645 | * @access public |
||
| 646 | * @internal Converts a base-2**26 number to base-10**7 (which is pretty much base-10) |
||
| 647 | */ |
||
| 648 | public function toString() |
||
| 649 | { |
||
| 650 | switch (MATH_BIGINTEGER_MODE) { |
||
| 651 | case self::MODE_GMP: |
||
| 652 | return gmp_strval($this->value); |
||
| 653 | case self::MODE_BCMATH: |
||
| 654 | if ($this->value === '0') { |
||
| 655 | return '0'; |
||
| 656 | } |
||
| 657 | |||
| 658 | return ltrim($this->value, '0'); |
||
| 659 | } |
||
| 660 | |||
| 661 | if (!count($this->value)) { |
||
| 662 | return '0'; |
||
| 663 | } |
||
| 664 | |||
| 665 | $temp = $this->copy(); |
||
| 666 | $temp->is_negative = false; |
||
| 667 | |||
| 668 | $divisor = new static(); |
||
| 669 | $divisor->value = array(self::$max10); |
||
| 670 | $result = ''; |
||
| 671 | while (count($temp->value)) { |
||
| 672 | list($temp, $mod) = $temp->divide($divisor); |
||
| 673 | $result = str_pad(isset($mod->value[0]) ? $mod->value[0] : '', self::$max10Len, '0', STR_PAD_LEFT) . $result; |
||
| 674 | } |
||
| 675 | $result = ltrim($result, '0'); |
||
| 676 | if (empty($result)) { |
||
| 677 | $result = '0'; |
||
| 678 | } |
||
| 679 | |||
| 680 | if ($this->is_negative) { |
||
| 681 | $result = '-' . $result; |
||
| 682 | } |
||
| 683 | |||
| 684 | return $result; |
||
| 685 | } |
||
| 686 | |||
| 687 | /** |
||
| 688 | * Copy an object |
||
| 689 | * |
||
| 690 | * PHP5 passes objects by reference while PHP4 passes by value. As such, we need a function to guarantee |
||
| 691 | * that all objects are passed by value, when appropriate. More information can be found here: |
||
| 692 | * |
||
| 693 | * {@link http://php.net/language.oop5.basic#51624} |
||
| 694 | * |
||
| 695 | * @access public |
||
| 696 | * @see self::__clone() |
||
| 697 | * @return \phpseclib\Math\BigInteger |
||
| 698 | */ |
||
| 699 | public function copy() |
||
| 700 | { |
||
| 701 | $temp = new static(); |
||
| 702 | $temp->value = $this->value; |
||
| 703 | $temp->is_negative = $this->is_negative; |
||
| 704 | $temp->precision = $this->precision; |
||
| 705 | $temp->bitmask = $this->bitmask; |
||
| 706 | return $temp; |
||
| 707 | } |
||
| 708 | |||
| 709 | /** |
||
| 710 | * __toString() magic method |
||
| 711 | * |
||
| 712 | * Will be called, automatically, if you're supporting just PHP5. If you're supporting PHP4, you'll need to call |
||
| 713 | * toString(). |
||
| 714 | * |
||
| 715 | * @access public |
||
| 716 | * @internal Implemented per a suggestion by Techie-Michael - thanks! |
||
| 717 | */ |
||
| 718 | public function __toString() |
||
| 719 | { |
||
| 720 | return $this->toString(); |
||
| 721 | } |
||
| 722 | |||
| 723 | /** |
||
| 724 | * __clone() magic method |
||
| 725 | * |
||
| 726 | * Although you can call BigInteger::__toString() directly in PHP5, you cannot call BigInteger::__clone() directly |
||
| 727 | * in PHP5. You can in PHP4 since it's not a magic method, but in PHP5, you have to call it by using the PHP5 |
||
| 728 | * only syntax of $y = clone $x. As such, if you're trying to write an application that works on both PHP4 and |
||
| 729 | * PHP5, call BigInteger::copy(), instead. |
||
| 730 | * |
||
| 731 | * @access public |
||
| 732 | * @see self::copy() |
||
| 733 | * @return \phpseclib\Math\BigInteger |
||
| 734 | */ |
||
| 735 | public function __clone() |
||
| 736 | { |
||
| 737 | return $this->copy(); |
||
| 738 | } |
||
| 739 | |||
| 740 | /** |
||
| 741 | * __sleep() magic method |
||
| 742 | * |
||
| 743 | * Will be called, automatically, when serialize() is called on a BigInteger object. |
||
| 744 | * |
||
| 745 | * @see self::__wakeup() |
||
| 746 | * @access public |
||
| 747 | */ |
||
| 748 | public function __sleep() |
||
| 749 | { |
||
| 750 | $this->hex = $this->toHex(true); |
||
| 751 | $vars = array('hex'); |
||
| 752 | if ($this->precision > 0) { |
||
| 753 | $vars[] = 'precision'; |
||
| 754 | } |
||
| 755 | return $vars; |
||
| 756 | } |
||
| 757 | |||
| 758 | /** |
||
| 759 | * __wakeup() magic method |
||
| 760 | * |
||
| 761 | * Will be called, automatically, when unserialize() is called on a BigInteger object. |
||
| 762 | * |
||
| 763 | * @see self::__sleep() |
||
| 764 | * @access public |
||
| 765 | */ |
||
| 766 | public function __wakeup() |
||
| 767 | { |
||
| 768 | $temp = new static($this->hex, -16); |
||
| 769 | $this->value = $temp->value; |
||
| 770 | $this->is_negative = $temp->is_negative; |
||
| 771 | if ($this->precision > 0) { |
||
| 772 | // recalculate $this->bitmask |
||
| 773 | $this->setPrecision($this->precision); |
||
| 774 | } |
||
| 775 | } |
||
| 776 | |||
| 777 | /** |
||
| 778 | * __debugInfo() magic method |
||
| 779 | * |
||
| 780 | * Will be called, automatically, when print_r() or var_dump() are called |
||
| 781 | * |
||
| 782 | * @access public |
||
| 783 | */ |
||
| 784 | public function __debugInfo() |
||
| 785 | { |
||
| 786 | $opts = array(); |
||
| 787 | switch (MATH_BIGINTEGER_MODE) { |
||
| 788 | case self::MODE_GMP: |
||
| 789 | $engine = 'gmp'; |
||
| 790 | break; |
||
| 791 | case self::MODE_BCMATH: |
||
| 792 | $engine = 'bcmath'; |
||
| 793 | break; |
||
| 794 | case self::MODE_INTERNAL: |
||
| 795 | $engine = 'internal'; |
||
| 796 | $opts[] = PHP_INT_SIZE == 8 ? '64-bit' : '32-bit'; |
||
| 797 | } |
||
| 798 | if (MATH_BIGINTEGER_MODE != self::MODE_GMP && defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) { |
||
| 799 | $opts[] = 'OpenSSL'; |
||
| 800 | } |
||
| 801 | if (!empty($opts)) { |
||
| 802 | $engine.= ' (' . implode($opts, ', ') . ')'; |
||
| 803 | } |
||
| 804 | return array( |
||
| 805 | 'value' => '0x' . $this->toHex(true), |
||
| 806 | 'engine' => $engine |
||
| 807 | ); |
||
| 808 | } |
||
| 809 | |||
| 810 | /** |
||
| 811 | * Adds two BigIntegers. |
||
| 812 | * |
||
| 813 | * Here's an example: |
||
| 814 | * <code> |
||
| 815 | * <?php |
||
| 816 | * $a = new \phpseclib\Math\BigInteger('10'); |
||
| 817 | * $b = new \phpseclib\Math\BigInteger('20'); |
||
| 818 | * |
||
| 819 | * $c = $a->add($b); |
||
| 820 | * |
||
| 821 | * echo $c->toString(); // outputs 30 |
||
| 822 | * ?> |
||
| 823 | * </code> |
||
| 824 | * |
||
| 825 | * @param \phpseclib\Math\BigInteger $y |
||
| 826 | * @return \phpseclib\Math\BigInteger |
||
| 827 | * @access public |
||
| 828 | * @internal Performs base-2**52 addition |
||
| 829 | */ |
||
| 830 | public function add($y) |
||
| 831 | { |
||
| 832 | switch (MATH_BIGINTEGER_MODE) { |
||
| 833 | case self::MODE_GMP: |
||
| 834 | $temp = new static(); |
||
| 835 | $temp->value = gmp_add($this->value, $y->value); |
||
| 836 | |||
| 837 | return $this->_normalize($temp); |
||
| 838 | case self::MODE_BCMATH: |
||
| 839 | $temp = new static(); |
||
| 840 | $temp->value = bcadd($this->value, $y->value, 0); |
||
| 841 | |||
| 842 | return $this->_normalize($temp); |
||
| 843 | } |
||
| 844 | |||
| 845 | $temp = $this->_add($this->value, $this->is_negative, $y->value, $y->is_negative); |
||
| 846 | |||
| 847 | $result = new static(); |
||
| 848 | $result->value = $temp[self::VALUE]; |
||
| 849 | $result->is_negative = $temp[self::SIGN]; |
||
| 850 | |||
| 851 | return $this->_normalize($result); |
||
| 852 | } |
||
| 853 | |||
| 854 | /** |
||
| 855 | * Performs addition. |
||
| 856 | * |
||
| 857 | * @param array $x_value |
||
| 858 | * @param bool $x_negative |
||
| 859 | * @param array $y_value |
||
| 860 | * @param bool $y_negative |
||
| 861 | * @return array |
||
| 862 | * @access private |
||
| 863 | */ |
||
| 864 | public function _add($x_value, $x_negative, $y_value, $y_negative) |
||
| 865 | { |
||
| 866 | $x_size = count($x_value); |
||
| 867 | $y_size = count($y_value); |
||
| 868 | |||
| 869 | if ($x_size == 0) { |
||
| 870 | return array( |
||
| 871 | self::VALUE => $y_value, |
||
| 872 | self::SIGN => $y_negative |
||
| 873 | ); |
||
| 874 | } elseif ($y_size == 0) { |
||
| 875 | return array( |
||
| 876 | self::VALUE => $x_value, |
||
| 877 | self::SIGN => $x_negative |
||
| 878 | ); |
||
| 879 | } |
||
| 880 | |||
| 881 | // subtract, if appropriate |
||
| 882 | if ($x_negative != $y_negative) { |
||
| 883 | if ($x_value == $y_value) { |
||
| 884 | return array( |
||
| 885 | self::VALUE => array(), |
||
| 886 | self::SIGN => false |
||
| 887 | ); |
||
| 888 | } |
||
| 889 | |||
| 890 | $temp = $this->_subtract($x_value, false, $y_value, false); |
||
| 891 | $temp[self::SIGN] = $this->_compare($x_value, false, $y_value, false) > 0 ? |
||
| 892 | $x_negative : $y_negative; |
||
| 893 | |||
| 894 | return $temp; |
||
| 895 | } |
||
| 896 | |||
| 897 | if ($x_size < $y_size) { |
||
| 898 | $size = $x_size; |
||
| 899 | $value = $y_value; |
||
| 900 | } else { |
||
| 901 | $size = $y_size; |
||
| 902 | $value = $x_value; |
||
| 903 | } |
||
| 904 | |||
| 905 | $value[count($value)] = 0; // just in case the carry adds an extra digit |
||
| 906 | |||
| 907 | $carry = 0; |
||
| 908 | for ($i = 0, $j = 1; $j < $size; $i+=2, $j+=2) { |
||
| 909 | $sum = $x_value[$j] * self::$baseFull + $x_value[$i] + $y_value[$j] * self::$baseFull + $y_value[$i] + $carry; |
||
| 910 | $carry = $sum >= self::$maxDigit2; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1 |
||
| 911 | $sum = $carry ? $sum - self::$maxDigit2 : $sum; |
||
| 912 | |||
| 913 | $temp = self::$base === 26 ? intval($sum / 0x4000000) : ($sum >> 31); |
||
| 914 | |||
| 915 | $value[$i] = (int) ($sum - self::$baseFull * $temp); // eg. a faster alternative to fmod($sum, 0x4000000) |
||
| 916 | $value[$j] = $temp; |
||
| 917 | } |
||
| 918 | |||
| 919 | if ($j == $size) { // ie. if $y_size is odd |
||
| 920 | $sum = $x_value[$i] + $y_value[$i] + $carry; |
||
| 921 | $carry = $sum >= self::$baseFull; |
||
| 922 | $value[$i] = $carry ? $sum - self::$baseFull : $sum; |
||
| 923 | ++$i; // ie. let $i = $j since we've just done $value[$i] |
||
| 924 | } |
||
| 925 | |||
| 926 | if ($carry) { |
||
| 927 | for (; $value[$i] == self::$maxDigit; ++$i) { |
||
| 928 | $value[$i] = 0; |
||
| 929 | } |
||
| 930 | ++$value[$i]; |
||
| 931 | } |
||
| 932 | |||
| 933 | return array( |
||
| 934 | self::VALUE => $this->_trim($value), |
||
| 935 | self::SIGN => $x_negative |
||
| 936 | ); |
||
| 937 | } |
||
| 938 | |||
| 939 | /** |
||
| 940 | * Subtracts two BigIntegers. |
||
| 941 | * |
||
| 942 | * Here's an example: |
||
| 943 | * <code> |
||
| 944 | * <?php |
||
| 945 | * $a = new \phpseclib\Math\BigInteger('10'); |
||
| 946 | * $b = new \phpseclib\Math\BigInteger('20'); |
||
| 947 | * |
||
| 948 | * $c = $a->subtract($b); |
||
| 949 | * |
||
| 950 | * echo $c->toString(); // outputs -10 |
||
| 951 | * ?> |
||
| 952 | * </code> |
||
| 953 | * |
||
| 954 | * @param \phpseclib\Math\BigInteger $y |
||
| 955 | * @return \phpseclib\Math\BigInteger |
||
| 956 | * @access public |
||
| 957 | * @internal Performs base-2**52 subtraction |
||
| 958 | */ |
||
| 959 | public function subtract($y) |
||
| 960 | { |
||
| 961 | switch (MATH_BIGINTEGER_MODE) { |
||
| 962 | case self::MODE_GMP: |
||
| 963 | $temp = new static(); |
||
| 964 | $temp->value = gmp_sub($this->value, $y->value); |
||
| 965 | |||
| 966 | return $this->_normalize($temp); |
||
| 967 | case self::MODE_BCMATH: |
||
| 968 | $temp = new static(); |
||
| 969 | $temp->value = bcsub($this->value, $y->value, 0); |
||
| 970 | |||
| 971 | return $this->_normalize($temp); |
||
| 972 | } |
||
| 973 | |||
| 974 | $temp = $this->_subtract($this->value, $this->is_negative, $y->value, $y->is_negative); |
||
| 975 | |||
| 976 | $result = new static(); |
||
| 977 | $result->value = $temp[self::VALUE]; |
||
| 978 | $result->is_negative = $temp[self::SIGN]; |
||
| 979 | |||
| 980 | return $this->_normalize($result); |
||
| 981 | } |
||
| 982 | |||
| 983 | /** |
||
| 984 | * Performs subtraction. |
||
| 985 | * |
||
| 986 | * @param array $x_value |
||
| 987 | * @param bool $x_negative |
||
| 988 | * @param array $y_value |
||
| 989 | * @param bool $y_negative |
||
| 990 | * @return array |
||
| 991 | * @access private |
||
| 992 | */ |
||
| 993 | public function _subtract($x_value, $x_negative, $y_value, $y_negative) |
||
| 994 | { |
||
| 995 | $x_size = count($x_value); |
||
| 996 | $y_size = count($y_value); |
||
| 997 | |||
| 998 | if ($x_size == 0) { |
||
| 999 | return array( |
||
| 1000 | self::VALUE => $y_value, |
||
| 1001 | self::SIGN => !$y_negative |
||
| 1002 | ); |
||
| 1003 | } elseif ($y_size == 0) { |
||
| 1004 | return array( |
||
| 1005 | self::VALUE => $x_value, |
||
| 1006 | self::SIGN => $x_negative |
||
| 1007 | ); |
||
| 1008 | } |
||
| 1009 | |||
| 1010 | // add, if appropriate (ie. -$x - +$y or +$x - -$y) |
||
| 1011 | if ($x_negative != $y_negative) { |
||
| 1012 | $temp = $this->_add($x_value, false, $y_value, false); |
||
| 1013 | $temp[self::SIGN] = $x_negative; |
||
| 1014 | |||
| 1015 | return $temp; |
||
| 1016 | } |
||
| 1017 | |||
| 1018 | $diff = $this->_compare($x_value, $x_negative, $y_value, $y_negative); |
||
| 1019 | |||
| 1020 | if (!$diff) { |
||
| 1021 | return array( |
||
| 1022 | self::VALUE => array(), |
||
| 1023 | self::SIGN => false |
||
| 1024 | ); |
||
| 1025 | } |
||
| 1026 | |||
| 1027 | // switch $x and $y around, if appropriate. |
||
| 1028 | if ((!$x_negative && $diff < 0) || ($x_negative && $diff > 0)) { |
||
| 1029 | $temp = $x_value; |
||
| 1030 | $x_value = $y_value; |
||
| 1031 | $y_value = $temp; |
||
| 1032 | |||
| 1033 | $x_negative = !$x_negative; |
||
| 1034 | |||
| 1035 | $x_size = count($x_value); |
||
| 1036 | $y_size = count($y_value); |
||
| 1037 | } |
||
| 1038 | |||
| 1039 | // at this point, $x_value should be at least as big as - if not bigger than - $y_value |
||
| 1040 | |||
| 1041 | $carry = 0; |
||
| 1042 | for ($i = 0, $j = 1; $j < $y_size; $i+=2, $j+=2) { |
||
| 1043 | $sum = $x_value[$j] * self::$baseFull + $x_value[$i] - $y_value[$j] * self::$baseFull - $y_value[$i] - $carry; |
||
| 1044 | $carry = $sum < 0; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1 |
||
| 1045 | $sum = $carry ? $sum + self::$maxDigit2 : $sum; |
||
| 1046 | |||
| 1047 | $temp = self::$base === 26 ? intval($sum / 0x4000000) : ($sum >> 31); |
||
| 1048 | |||
| 1049 | $x_value[$i] = (int) ($sum - self::$baseFull * $temp); |
||
| 1050 | $x_value[$j] = $temp; |
||
| 1051 | } |
||
| 1052 | |||
| 1053 | if ($j == $y_size) { // ie. if $y_size is odd |
||
| 1054 | $sum = $x_value[$i] - $y_value[$i] - $carry; |
||
| 1055 | $carry = $sum < 0; |
||
| 1056 | $x_value[$i] = $carry ? $sum + self::$baseFull : $sum; |
||
| 1057 | ++$i; |
||
| 1058 | } |
||
| 1059 | |||
| 1060 | if ($carry) { |
||
| 1061 | for (; !$x_value[$i]; ++$i) { |
||
| 1062 | $x_value[$i] = self::$maxDigit; |
||
| 1063 | } |
||
| 1064 | --$x_value[$i]; |
||
| 1065 | } |
||
| 1066 | |||
| 1067 | return array( |
||
| 1068 | self::VALUE => $this->_trim($x_value), |
||
| 1069 | self::SIGN => $x_negative |
||
| 1070 | ); |
||
| 1071 | } |
||
| 1072 | |||
| 1073 | /** |
||
| 1074 | * Multiplies two BigIntegers |
||
| 1075 | * |
||
| 1076 | * Here's an example: |
||
| 1077 | * <code> |
||
| 1078 | * <?php |
||
| 1079 | * $a = new \phpseclib\Math\BigInteger('10'); |
||
| 1080 | * $b = new \phpseclib\Math\BigInteger('20'); |
||
| 1081 | * |
||
| 1082 | * $c = $a->multiply($b); |
||
| 1083 | * |
||
| 1084 | * echo $c->toString(); // outputs 200 |
||
| 1085 | * ?> |
||
| 1086 | * </code> |
||
| 1087 | * |
||
| 1088 | * @param \phpseclib\Math\BigInteger $x |
||
| 1089 | * @return \phpseclib\Math\BigInteger |
||
| 1090 | * @access public |
||
| 1091 | */ |
||
| 1092 | public function multiply($x) |
||
| 1093 | { |
||
| 1094 | switch (MATH_BIGINTEGER_MODE) { |
||
| 1095 | case self::MODE_GMP: |
||
| 1096 | $temp = new static(); |
||
| 1097 | $temp->value = gmp_mul($this->value, $x->value); |
||
| 1098 | |||
| 1099 | return $this->_normalize($temp); |
||
| 1100 | case self::MODE_BCMATH: |
||
| 1101 | $temp = new static(); |
||
| 1102 | $temp->value = bcmul($this->value, $x->value, 0); |
||
| 1103 | |||
| 1104 | return $this->_normalize($temp); |
||
| 1105 | } |
||
| 1106 | |||
| 1107 | $temp = $this->_multiply($this->value, $this->is_negative, $x->value, $x->is_negative); |
||
| 1108 | |||
| 1109 | $product = new static(); |
||
| 1110 | $product->value = $temp[self::VALUE]; |
||
| 1111 | $product->is_negative = $temp[self::SIGN]; |
||
| 1112 | |||
| 1113 | return $this->_normalize($product); |
||
| 1114 | } |
||
| 1115 | |||
| 1116 | /** |
||
| 1117 | * Performs multiplication. |
||
| 1118 | * |
||
| 1119 | * @param array $x_value |
||
| 1120 | * @param bool $x_negative |
||
| 1121 | * @param array $y_value |
||
| 1122 | * @param bool $y_negative |
||
| 1123 | * @return array |
||
| 1124 | * @access private |
||
| 1125 | */ |
||
| 1126 | public function _multiply($x_value, $x_negative, $y_value, $y_negative) |
||
| 1127 | { |
||
| 1128 | //if ( $x_value == $y_value ) { |
||
| 1129 | // return array( |
||
| 1130 | // self::VALUE => $this->_square($x_value), |
||
| 1131 | // self::SIGN => $x_sign != $y_value |
||
| 1132 | // ); |
||
| 1133 | //} |
||
| 1134 | |||
| 1135 | $x_length = count($x_value); |
||
| 1136 | $y_length = count($y_value); |
||
| 1137 | |||
| 1138 | if (!$x_length || !$y_length) { // a 0 is being multiplied |
||
| 1139 | return array( |
||
| 1140 | self::VALUE => array(), |
||
| 1141 | self::SIGN => false |
||
| 1142 | ); |
||
| 1143 | } |
||
| 1144 | |||
| 1145 | return array( |
||
| 1146 | self::VALUE => min($x_length, $y_length) < 2 * self::KARATSUBA_CUTOFF ? |
||
| 1147 | $this->_trim($this->_regularMultiply($x_value, $y_value)) : |
||
| 1148 | $this->_trim($this->_karatsuba($x_value, $y_value)), |
||
| 1149 | self::SIGN => $x_negative != $y_negative |
||
| 1150 | ); |
||
| 1151 | } |
||
| 1152 | |||
| 1153 | /** |
||
| 1154 | * Performs long multiplication on two BigIntegers |
||
| 1155 | * |
||
| 1156 | * Modeled after 'multiply' in MutableBigInteger.java. |
||
| 1157 | * |
||
| 1158 | * @param array $x_value |
||
| 1159 | * @param array $y_value |
||
| 1160 | * @return array |
||
| 1161 | * @access private |
||
| 1162 | */ |
||
| 1163 | public function _regularMultiply($x_value, $y_value) |
||
| 1164 | { |
||
| 1165 | $x_length = count($x_value); |
||
| 1166 | $y_length = count($y_value); |
||
| 1167 | |||
| 1168 | if (!$x_length || !$y_length) { // a 0 is being multiplied |
||
| 1169 | return array(); |
||
| 1170 | } |
||
| 1171 | |||
| 1172 | if ($x_length < $y_length) { |
||
| 1173 | $temp = $x_value; |
||
| 1174 | $x_value = $y_value; |
||
| 1175 | $y_value = $temp; |
||
| 1176 | |||
| 1177 | $x_length = count($x_value); |
||
| 1178 | $y_length = count($y_value); |
||
| 1179 | } |
||
| 1180 | |||
| 1181 | $product_value = $this->_array_repeat(0, $x_length + $y_length); |
||
| 1182 | |||
| 1183 | // the following for loop could be removed if the for loop following it |
||
| 1184 | // (the one with nested for loops) initially set $i to 0, but |
||
| 1185 | // doing so would also make the result in one set of unnecessary adds, |
||
| 1186 | // since on the outermost loops first pass, $product->value[$k] is going |
||
| 1187 | // to always be 0 |
||
| 1188 | |||
| 1189 | $carry = 0; |
||
| 1190 | |||
| 1191 | for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0 |
||
| 1192 | $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0 |
||
| 1193 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 1194 | $product_value[$j] = (int) ($temp - self::$baseFull * $carry); |
||
| 1195 | } |
||
| 1196 | |||
| 1197 | $product_value[$j] = $carry; |
||
| 1198 | |||
| 1199 | // the above for loop is what the previous comment was talking about. the |
||
| 1200 | // following for loop is the "one with nested for loops" |
||
| 1201 | for ($i = 1; $i < $y_length; ++$i) { |
||
| 1202 | $carry = 0; |
||
| 1203 | |||
| 1204 | for ($j = 0, $k = $i; $j < $x_length; ++$j, ++$k) { |
||
| 1205 | $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry; |
||
| 1206 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 1207 | $product_value[$k] = (int) ($temp - self::$baseFull * $carry); |
||
| 1208 | } |
||
| 1209 | |||
| 1210 | $product_value[$k] = $carry; |
||
| 1211 | } |
||
| 1212 | |||
| 1213 | return $product_value; |
||
| 1214 | } |
||
| 1215 | |||
| 1216 | /** |
||
| 1217 | * Performs Karatsuba multiplication on two BigIntegers |
||
| 1218 | * |
||
| 1219 | * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and |
||
| 1220 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=120 MPM 5.2.3}. |
||
| 1221 | * |
||
| 1222 | * @param array $x_value |
||
| 1223 | * @param array $y_value |
||
| 1224 | * @return array |
||
| 1225 | * @access private |
||
| 1226 | */ |
||
| 1227 | public function _karatsuba($x_value, $y_value) |
||
| 1228 | { |
||
| 1229 | $m = min(count($x_value) >> 1, count($y_value) >> 1); |
||
| 1230 | |||
| 1231 | if ($m < self::KARATSUBA_CUTOFF) { |
||
| 1232 | return $this->_regularMultiply($x_value, $y_value); |
||
| 1233 | } |
||
| 1234 | |||
| 1235 | $x1 = array_slice($x_value, $m); |
||
| 1236 | $x0 = array_slice($x_value, 0, $m); |
||
| 1237 | $y1 = array_slice($y_value, $m); |
||
| 1238 | $y0 = array_slice($y_value, 0, $m); |
||
| 1239 | |||
| 1240 | $z2 = $this->_karatsuba($x1, $y1); |
||
| 1241 | $z0 = $this->_karatsuba($x0, $y0); |
||
| 1242 | |||
| 1243 | $z1 = $this->_add($x1, false, $x0, false); |
||
| 1244 | $temp = $this->_add($y1, false, $y0, false); |
||
| 1245 | $z1 = $this->_karatsuba($z1[self::VALUE], $temp[self::VALUE]); |
||
| 1246 | $temp = $this->_add($z2, false, $z0, false); |
||
| 1247 | $z1 = $this->_subtract($z1, false, $temp[self::VALUE], false); |
||
| 1248 | |||
| 1249 | $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2); |
||
| 1250 | $z1[self::VALUE] = array_merge(array_fill(0, $m, 0), $z1[self::VALUE]); |
||
| 1251 | |||
| 1252 | $xy = $this->_add($z2, false, $z1[self::VALUE], $z1[self::SIGN]); |
||
| 1253 | $xy = $this->_add($xy[self::VALUE], $xy[self::SIGN], $z0, false); |
||
| 1254 | |||
| 1255 | return $xy[self::VALUE]; |
||
| 1256 | } |
||
| 1257 | |||
| 1258 | /** |
||
| 1259 | * Performs squaring |
||
| 1260 | * |
||
| 1261 | * @param array $x |
||
| 1262 | * @return array |
||
| 1263 | * @access private |
||
| 1264 | */ |
||
| 1265 | public function _square($x = false) |
||
| 1266 | { |
||
| 1267 | return count($x) < 2 * self::KARATSUBA_CUTOFF ? |
||
| 1268 | $this->_trim($this->_baseSquare($x)) : |
||
| 1269 | $this->_trim($this->_karatsubaSquare($x)); |
||
| 1270 | } |
||
| 1271 | |||
| 1272 | /** |
||
| 1273 | * Performs traditional squaring on two BigIntegers |
||
| 1274 | * |
||
| 1275 | * Squaring can be done faster than multiplying a number by itself can be. See |
||
| 1276 | * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=7 HAC 14.2.4} / |
||
| 1277 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=141 MPM 5.3} for more information. |
||
| 1278 | * |
||
| 1279 | * @param array $value |
||
| 1280 | * @return array |
||
| 1281 | * @access private |
||
| 1282 | */ |
||
| 1283 | public function _baseSquare($value) |
||
| 1284 | { |
||
| 1285 | if (empty($value)) { |
||
| 1286 | return array(); |
||
| 1287 | } |
||
| 1288 | $square_value = $this->_array_repeat(0, 2 * count($value)); |
||
| 1289 | |||
| 1290 | for ($i = 0, $max_index = count($value) - 1; $i <= $max_index; ++$i) { |
||
| 1291 | $i2 = $i << 1; |
||
| 1292 | |||
| 1293 | $temp = $square_value[$i2] + $value[$i] * $value[$i]; |
||
| 1294 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 1295 | $square_value[$i2] = (int) ($temp - self::$baseFull * $carry); |
||
| 1296 | |||
| 1297 | // note how we start from $i+1 instead of 0 as we do in multiplication. |
||
| 1298 | for ($j = $i + 1, $k = $i2 + 1; $j <= $max_index; ++$j, ++$k) { |
||
| 1299 | $temp = $square_value[$k] + 2 * $value[$j] * $value[$i] + $carry; |
||
| 1300 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 1301 | $square_value[$k] = (int) ($temp - self::$baseFull * $carry); |
||
| 1302 | } |
||
| 1303 | |||
| 1304 | // the following line can yield values larger 2**15. at this point, PHP should switch |
||
| 1305 | // over to floats. |
||
| 1306 | $square_value[$i + $max_index + 1] = $carry; |
||
| 1307 | } |
||
| 1308 | |||
| 1309 | return $square_value; |
||
| 1310 | } |
||
| 1311 | |||
| 1312 | /** |
||
| 1313 | * Performs Karatsuba "squaring" on two BigIntegers |
||
| 1314 | * |
||
| 1315 | * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and |
||
| 1316 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=151 MPM 5.3.4}. |
||
| 1317 | * |
||
| 1318 | * @param array $value |
||
| 1319 | * @return array |
||
| 1320 | * @access private |
||
| 1321 | */ |
||
| 1322 | public function _karatsubaSquare($value) |
||
| 1323 | { |
||
| 1324 | $m = count($value) >> 1; |
||
| 1325 | |||
| 1326 | if ($m < self::KARATSUBA_CUTOFF) { |
||
| 1327 | return $this->_baseSquare($value); |
||
| 1328 | } |
||
| 1329 | |||
| 1330 | $x1 = array_slice($value, $m); |
||
| 1331 | $x0 = array_slice($value, 0, $m); |
||
| 1332 | |||
| 1333 | $z2 = $this->_karatsubaSquare($x1); |
||
| 1334 | $z0 = $this->_karatsubaSquare($x0); |
||
| 1335 | |||
| 1336 | $z1 = $this->_add($x1, false, $x0, false); |
||
| 1337 | $z1 = $this->_karatsubaSquare($z1[self::VALUE]); |
||
| 1338 | $temp = $this->_add($z2, false, $z0, false); |
||
| 1339 | $z1 = $this->_subtract($z1, false, $temp[self::VALUE], false); |
||
| 1340 | |||
| 1341 | $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2); |
||
| 1342 | $z1[self::VALUE] = array_merge(array_fill(0, $m, 0), $z1[self::VALUE]); |
||
| 1343 | |||
| 1344 | $xx = $this->_add($z2, false, $z1[self::VALUE], $z1[self::SIGN]); |
||
| 1345 | $xx = $this->_add($xx[self::VALUE], $xx[self::SIGN], $z0, false); |
||
| 1346 | |||
| 1347 | return $xx[self::VALUE]; |
||
| 1348 | } |
||
| 1349 | |||
| 1350 | /** |
||
| 1351 | * Divides two BigIntegers. |
||
| 1352 | * |
||
| 1353 | * Returns an array whose first element contains the quotient and whose second element contains the |
||
| 1354 | * "common residue". If the remainder would be positive, the "common residue" and the remainder are the |
||
| 1355 | * same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder |
||
| 1356 | * and the divisor (basically, the "common residue" is the first positive modulo). |
||
| 1357 | * |
||
| 1358 | * Here's an example: |
||
| 1359 | * <code> |
||
| 1360 | * <?php |
||
| 1361 | * $a = new \phpseclib\Math\BigInteger('10'); |
||
| 1362 | * $b = new \phpseclib\Math\BigInteger('20'); |
||
| 1363 | * |
||
| 1364 | * list($quotient, $remainder) = $a->divide($b); |
||
| 1365 | * |
||
| 1366 | * echo $quotient->toString(); // outputs 0 |
||
| 1367 | * echo "\r\n"; |
||
| 1368 | * echo $remainder->toString(); // outputs 10 |
||
| 1369 | * ?> |
||
| 1370 | * </code> |
||
| 1371 | * |
||
| 1372 | * @param \phpseclib\Math\BigInteger $y |
||
| 1373 | * @return array |
||
| 1374 | * @access public |
||
| 1375 | * @internal This function is based off of {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=9 HAC 14.20}. |
||
| 1376 | */ |
||
| 1377 | public function divide($y) |
||
| 1378 | { |
||
| 1379 | switch (MATH_BIGINTEGER_MODE) { |
||
| 1380 | case self::MODE_GMP: |
||
| 1381 | $quotient = new static(); |
||
| 1382 | $remainder = new static(); |
||
| 1383 | |||
| 1384 | list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value); |
||
| 1385 | |||
| 1386 | if (gmp_sign($remainder->value) < 0) { |
||
| 1387 | $remainder->value = gmp_add($remainder->value, gmp_abs($y->value)); |
||
| 1388 | } |
||
| 1389 | |||
| 1390 | return array($this->_normalize($quotient), $this->_normalize($remainder)); |
||
| 1391 | case self::MODE_BCMATH: |
||
| 1392 | $quotient = new static(); |
||
| 1393 | $remainder = new static(); |
||
| 1394 | |||
| 1395 | $quotient->value = bcdiv($this->value, $y->value, 0); |
||
| 1396 | $remainder->value = bcmod($this->value, $y->value); |
||
| 1397 | |||
| 1398 | if ($remainder->value[0] == '-') { |
||
| 1399 | $remainder->value = bcadd($remainder->value, $y->value[0] == '-' ? substr($y->value, 1) : $y->value, 0); |
||
| 1400 | } |
||
| 1401 | |||
| 1402 | return array($this->_normalize($quotient), $this->_normalize($remainder)); |
||
| 1403 | } |
||
| 1404 | |||
| 1405 | if (count($y->value) == 1) { |
||
| 1406 | list($q, $r) = $this->_divide_digit($this->value, $y->value[0]); |
||
| 1407 | $quotient = new static(); |
||
| 1408 | $remainder = new static(); |
||
| 1409 | $quotient->value = $q; |
||
| 1410 | $remainder->value = array($r); |
||
| 1411 | $quotient->is_negative = $this->is_negative != $y->is_negative; |
||
| 1412 | return array($this->_normalize($quotient), $this->_normalize($remainder)); |
||
| 1413 | } |
||
| 1414 | |||
| 1415 | static $zero; |
||
| 1416 | if (!isset($zero)) { |
||
| 1417 | $zero = new static(); |
||
| 1418 | } |
||
| 1419 | |||
| 1420 | $x = $this->copy(); |
||
| 1421 | $y = $y->copy(); |
||
| 1422 | |||
| 1423 | $x_sign = $x->is_negative; |
||
| 1424 | $y_sign = $y->is_negative; |
||
| 1425 | |||
| 1426 | $x->is_negative = $y->is_negative = false; |
||
| 1427 | |||
| 1428 | $diff = $x->compare($y); |
||
| 1429 | |||
| 1430 | if (!$diff) { |
||
| 1431 | $temp = new static(); |
||
| 1432 | $temp->value = array(1); |
||
| 1433 | $temp->is_negative = $x_sign != $y_sign; |
||
| 1434 | return array($this->_normalize($temp), $this->_normalize(new static())); |
||
| 1435 | } |
||
| 1436 | |||
| 1437 | if ($diff < 0) { |
||
| 1438 | // if $x is negative, "add" $y. |
||
| 1439 | if ($x_sign) { |
||
| 1440 | $x = $y->subtract($x); |
||
| 1441 | } |
||
| 1442 | return array($this->_normalize(new static()), $this->_normalize($x)); |
||
| 1443 | } |
||
| 1444 | |||
| 1445 | // normalize $x and $y as described in HAC 14.23 / 14.24 |
||
| 1446 | $msb = $y->value[count($y->value) - 1]; |
||
| 1447 | for ($shift = 0; !($msb & self::$msb); ++$shift) { |
||
| 1448 | $msb <<= 1; |
||
| 1449 | } |
||
| 1450 | $x->_lshift($shift); |
||
| 1451 | $y->_lshift($shift); |
||
| 1452 | $y_value = &$y->value; |
||
| 1453 | |||
| 1454 | $x_max = count($x->value) - 1; |
||
| 1455 | $y_max = count($y->value) - 1; |
||
| 1456 | |||
| 1457 | $quotient = new static(); |
||
| 1458 | $quotient_value = &$quotient->value; |
||
| 1459 | $quotient_value = $this->_array_repeat(0, $x_max - $y_max + 1); |
||
| 1460 | |||
| 1461 | static $temp, $lhs, $rhs; |
||
| 1462 | if (!isset($temp)) { |
||
| 1463 | $temp = new static(); |
||
| 1464 | $lhs = new static(); |
||
| 1465 | $rhs = new static(); |
||
| 1466 | } |
||
| 1467 | $temp_value = &$temp->value; |
||
| 1468 | $rhs_value = &$rhs->value; |
||
| 1469 | |||
| 1470 | // $temp = $y << ($x_max - $y_max-1) in base 2**26 |
||
| 1471 | $temp_value = array_merge($this->_array_repeat(0, $x_max - $y_max), $y_value); |
||
| 1472 | |||
| 1473 | while ($x->compare($temp) >= 0) { |
||
| 1474 | // calculate the "common residue" |
||
| 1475 | ++$quotient_value[$x_max - $y_max]; |
||
| 1476 | $x = $x->subtract($temp); |
||
| 1477 | $x_max = count($x->value) - 1; |
||
| 1478 | } |
||
| 1479 | |||
| 1480 | for ($i = $x_max; $i >= $y_max + 1; --$i) { |
||
| 1481 | $x_value = &$x->value; |
||
| 1482 | $x_window = array( |
||
| 1483 | isset($x_value[$i]) ? $x_value[$i] : 0, |
||
| 1484 | isset($x_value[$i - 1]) ? $x_value[$i - 1] : 0, |
||
| 1485 | isset($x_value[$i - 2]) ? $x_value[$i - 2] : 0 |
||
| 1486 | ); |
||
| 1487 | $y_window = array( |
||
| 1488 | $y_value[$y_max], |
||
| 1489 | ($y_max > 0) ? $y_value[$y_max - 1] : 0 |
||
| 1490 | ); |
||
| 1491 | |||
| 1492 | $q_index = $i - $y_max - 1; |
||
| 1493 | if ($x_window[0] == $y_window[0]) { |
||
| 1494 | $quotient_value[$q_index] = self::$maxDigit; |
||
| 1495 | } else { |
||
| 1496 | $quotient_value[$q_index] = $this->_safe_divide( |
||
| 1497 | $x_window[0] * self::$baseFull + $x_window[1], |
||
| 1498 | $y_window[0] |
||
| 1499 | ); |
||
| 1500 | } |
||
| 1501 | |||
| 1502 | $temp_value = array($y_window[1], $y_window[0]); |
||
| 1503 | |||
| 1504 | $lhs->value = array($quotient_value[$q_index]); |
||
| 1505 | $lhs = $lhs->multiply($temp); |
||
| 1506 | |||
| 1507 | $rhs_value = array($x_window[2], $x_window[1], $x_window[0]); |
||
| 1508 | |||
| 1509 | while ($lhs->compare($rhs) > 0) { |
||
| 1510 | --$quotient_value[$q_index]; |
||
| 1511 | |||
| 1512 | $lhs->value = array($quotient_value[$q_index]); |
||
| 1513 | $lhs = $lhs->multiply($temp); |
||
| 1514 | } |
||
| 1515 | |||
| 1516 | $adjust = $this->_array_repeat(0, $q_index); |
||
| 1517 | $temp_value = array($quotient_value[$q_index]); |
||
| 1518 | $temp = $temp->multiply($y); |
||
| 1519 | $temp_value = &$temp->value; |
||
| 1520 | $temp_value = array_merge($adjust, $temp_value); |
||
| 1521 | |||
| 1522 | $x = $x->subtract($temp); |
||
| 1523 | |||
| 1524 | if ($x->compare($zero) < 0) { |
||
| 1525 | $temp_value = array_merge($adjust, $y_value); |
||
| 1526 | $x = $x->add($temp); |
||
| 1527 | |||
| 1528 | --$quotient_value[$q_index]; |
||
| 1529 | } |
||
| 1530 | |||
| 1531 | $x_max = count($x_value) - 1; |
||
| 1532 | } |
||
| 1533 | |||
| 1534 | // unnormalize the remainder |
||
| 1535 | $x->_rshift($shift); |
||
| 1536 | |||
| 1537 | $quotient->is_negative = $x_sign != $y_sign; |
||
| 1538 | |||
| 1539 | // calculate the "common residue", if appropriate |
||
| 1540 | if ($x_sign) { |
||
| 1541 | $y->_rshift($shift); |
||
| 1542 | $x = $y->subtract($x); |
||
| 1543 | } |
||
| 1544 | |||
| 1545 | return array($this->_normalize($quotient), $this->_normalize($x)); |
||
| 1546 | } |
||
| 1547 | |||
| 1548 | /** |
||
| 1549 | * Divides a BigInteger by a regular integer |
||
| 1550 | * |
||
| 1551 | * abc / x = a00 / x + b0 / x + c / x |
||
| 1552 | * |
||
| 1553 | * @param array $dividend |
||
| 1554 | * @param array $divisor |
||
| 1555 | * @return array |
||
| 1556 | * @access private |
||
| 1557 | */ |
||
| 1558 | public function _divide_digit($dividend, $divisor) |
||
| 1559 | { |
||
| 1560 | $carry = 0; |
||
| 1561 | $result = array(); |
||
| 1562 | |||
| 1563 | for ($i = count($dividend) - 1; $i >= 0; --$i) { |
||
| 1564 | $temp = self::$baseFull * $carry + $dividend[$i]; |
||
| 1565 | $result[$i] = $this->_safe_divide($temp, $divisor); |
||
| 1566 | $carry = (int) ($temp - $divisor * $result[$i]); |
||
| 1567 | } |
||
| 1568 | |||
| 1569 | return array($result, $carry); |
||
| 1570 | } |
||
| 1571 | |||
| 1572 | /** |
||
| 1573 | * Performs modular exponentiation. |
||
| 1574 | * |
||
| 1575 | * Here's an example: |
||
| 1576 | * <code> |
||
| 1577 | * <?php |
||
| 1578 | * $a = new \phpseclib\Math\BigInteger('10'); |
||
| 1579 | * $b = new \phpseclib\Math\BigInteger('20'); |
||
| 1580 | * $c = new \phpseclib\Math\BigInteger('30'); |
||
| 1581 | * |
||
| 1582 | * $c = $a->modPow($b, $c); |
||
| 1583 | * |
||
| 1584 | * echo $c->toString(); // outputs 10 |
||
| 1585 | * ?> |
||
| 1586 | * </code> |
||
| 1587 | * |
||
| 1588 | * @param \phpseclib\Math\BigInteger $e |
||
| 1589 | * @param \phpseclib\Math\BigInteger $n |
||
| 1590 | * @return \phpseclib\Math\BigInteger |
||
| 1591 | * @access public |
||
| 1592 | * @internal The most naive approach to modular exponentiation has very unreasonable requirements, and |
||
| 1593 | * and although the approach involving repeated squaring does vastly better, it, too, is impractical |
||
| 1594 | * for our purposes. The reason being that division - by far the most complicated and time-consuming |
||
| 1595 | * of the basic operations (eg. +,-,*,/) - occurs multiple times within it. |
||
| 1596 | * |
||
| 1597 | * Modular reductions resolve this issue. Although an individual modular reduction takes more time |
||
| 1598 | * then an individual division, when performed in succession (with the same modulo), they're a lot faster. |
||
| 1599 | * |
||
| 1600 | * The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction, |
||
| 1601 | * although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the |
||
| 1602 | * base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because |
||
| 1603 | * the product of two odd numbers is odd), but what about when RSA isn't used? |
||
| 1604 | * |
||
| 1605 | * In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a |
||
| 1606 | * Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the |
||
| 1607 | * modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however, |
||
| 1608 | * uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and |
||
| 1609 | * the other, a power of two - and recombine them, later. This is the method that this modPow function uses. |
||
| 1610 | * {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates. |
||
| 1611 | */ |
||
| 1612 | public function modPow($e, $n) |
||
| 1613 | { |
||
| 1614 | $n = $this->bitmask !== false && $this->bitmask->compare($n) < 0 ? $this->bitmask : $n->abs(); |
||
| 1615 | |||
| 1616 | if ($e->compare(new static()) < 0) { |
||
| 1617 | $e = $e->abs(); |
||
| 1618 | |||
| 1619 | $temp = $this->modInverse($n); |
||
| 1620 | if ($temp === false) { |
||
| 1621 | return false; |
||
| 1622 | } |
||
| 1623 | |||
| 1624 | return $this->_normalize($temp->modPow($e, $n)); |
||
| 1625 | } |
||
| 1626 | |||
| 1627 | if (MATH_BIGINTEGER_MODE == self::MODE_GMP) { |
||
| 1628 | $temp = new static(); |
||
| 1629 | $temp->value = gmp_powm($this->value, $e->value, $n->value); |
||
| 1630 | |||
| 1631 | return $this->_normalize($temp); |
||
| 1632 | } |
||
| 1633 | |||
| 1634 | if ($this->compare(new static()) < 0 || $this->compare($n) > 0) { |
||
| 1635 | list(, $temp) = $this->divide($n); |
||
| 1636 | return $temp->modPow($e, $n); |
||
| 1637 | } |
||
| 1638 | |||
| 1639 | if (defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) { |
||
| 1640 | $components = array( |
||
| 1641 | 'modulus' => $n->toBytes(true), |
||
| 1642 | 'publicExponent' => $e->toBytes(true) |
||
| 1643 | ); |
||
| 1644 | |||
| 1645 | $components = array( |
||
| 1646 | 'modulus' => pack('Ca*a*', 2, $this->_encodeASN1Length(strlen($components['modulus'])), $components['modulus']), |
||
| 1647 | 'publicExponent' => pack('Ca*a*', 2, $this->_encodeASN1Length(strlen($components['publicExponent'])), $components['publicExponent']) |
||
| 1648 | ); |
||
| 1649 | |||
| 1650 | $RSAPublicKey = pack( |
||
| 1651 | 'Ca*a*a*', |
||
| 1652 | 48, |
||
| 1653 | $this->_encodeASN1Length(strlen($components['modulus']) + strlen($components['publicExponent'])), |
||
| 1654 | $components['modulus'], |
||
| 1655 | $components['publicExponent'] |
||
| 1656 | ); |
||
| 1657 | |||
| 1658 | $rsaOID = pack('H*', '300d06092a864886f70d0101010500'); // hex version of MA0GCSqGSIb3DQEBAQUA |
||
| 1659 | $RSAPublicKey = chr(0) . $RSAPublicKey; |
||
| 1660 | $RSAPublicKey = chr(3) . $this->_encodeASN1Length(strlen($RSAPublicKey)) . $RSAPublicKey; |
||
| 1661 | |||
| 1662 | $encapsulated = pack( |
||
| 1663 | 'Ca*a*', |
||
| 1664 | 48, |
||
| 1665 | $this->_encodeASN1Length(strlen($rsaOID . $RSAPublicKey)), |
||
| 1666 | $rsaOID . $RSAPublicKey |
||
| 1667 | ); |
||
| 1668 | |||
| 1669 | $RSAPublicKey = "-----BEGIN PUBLIC KEY-----\r\n" . |
||
| 1670 | chunk_split(base64_encode($encapsulated)) . |
||
| 1671 | '-----END PUBLIC KEY-----'; |
||
| 1672 | |||
| 1673 | $plaintext = str_pad($this->toBytes(), strlen($n->toBytes(true)) - 1, "\0", STR_PAD_LEFT); |
||
| 1674 | |||
| 1675 | if (openssl_public_encrypt($plaintext, $result, $RSAPublicKey, OPENSSL_NO_PADDING)) { |
||
| 1676 | return new static($result, 256); |
||
| 1677 | } |
||
| 1678 | } |
||
| 1679 | |||
| 1680 | if (MATH_BIGINTEGER_MODE == self::MODE_BCMATH) { |
||
| 1681 | $temp = new static(); |
||
| 1682 | $temp->value = bcpowmod($this->value, $e->value, $n->value, 0); |
||
| 1683 | |||
| 1684 | return $this->_normalize($temp); |
||
| 1685 | } |
||
| 1686 | |||
| 1687 | if (empty($e->value)) { |
||
| 1688 | $temp = new static(); |
||
| 1689 | $temp->value = array(1); |
||
| 1690 | return $this->_normalize($temp); |
||
| 1691 | } |
||
| 1692 | |||
| 1693 | if ($e->value == array(1)) { |
||
| 1694 | list(, $temp) = $this->divide($n); |
||
| 1695 | return $this->_normalize($temp); |
||
| 1696 | } |
||
| 1697 | |||
| 1698 | if ($e->value == array(2)) { |
||
| 1699 | $temp = new static(); |
||
| 1700 | $temp->value = $this->_square($this->value); |
||
| 1701 | list(, $temp) = $temp->divide($n); |
||
| 1702 | return $this->_normalize($temp); |
||
| 1703 | } |
||
| 1704 | |||
| 1705 | return $this->_normalize($this->_slidingWindow($e, $n, self::BARRETT)); |
||
| 1706 | |||
| 1707 | // the following code, although not callable, can be run independently of the above code |
||
| 1708 | // although the above code performed better in my benchmarks the following could might |
||
| 1709 | // perform better under different circumstances. in lieu of deleting it it's just been |
||
| 1710 | // made uncallable |
||
| 1711 | |||
| 1712 | // is the modulo odd? |
||
| 1713 | if ($n->value[0] & 1) { |
||
| 1714 | return $this->_normalize($this->_slidingWindow($e, $n, self::MONTGOMERY)); |
||
| 1715 | } |
||
| 1716 | // if it's not, it's even |
||
| 1717 | |||
| 1718 | // find the lowest set bit (eg. the max pow of 2 that divides $n) |
||
| 1719 | for ($i = 0; $i < count($n->value); ++$i) { |
||
| 1720 | if ($n->value[$i]) { |
||
| 1721 | $temp = decbin($n->value[$i]); |
||
| 1722 | $j = strlen($temp) - strrpos($temp, '1') - 1; |
||
| 1723 | $j+= 26 * $i; |
||
| 1724 | break; |
||
| 1725 | } |
||
| 1726 | } |
||
| 1727 | // at this point, 2^$j * $n/(2^$j) == $n |
||
| 1728 | |||
| 1729 | $mod1 = $n->copy(); |
||
| 1730 | $mod1->_rshift($j); |
||
| 1731 | $mod2 = new static(); |
||
| 1732 | $mod2->value = array(1); |
||
| 1733 | $mod2->_lshift($j); |
||
| 1734 | |||
| 1735 | $part1 = ($mod1->value != array(1)) ? $this->_slidingWindow($e, $mod1, self::MONTGOMERY) : new static(); |
||
| 1736 | $part2 = $this->_slidingWindow($e, $mod2, self::POWEROF2); |
||
| 1737 | |||
| 1738 | $y1 = $mod2->modInverse($mod1); |
||
| 1739 | $y2 = $mod1->modInverse($mod2); |
||
| 1740 | |||
| 1741 | $result = $part1->multiply($mod2); |
||
| 1742 | $result = $result->multiply($y1); |
||
| 1743 | |||
| 1744 | $temp = $part2->multiply($mod1); |
||
| 1745 | $temp = $temp->multiply($y2); |
||
| 1746 | |||
| 1747 | $result = $result->add($temp); |
||
| 1748 | list(, $result) = $result->divide($n); |
||
| 1749 | |||
| 1750 | return $this->_normalize($result); |
||
| 1751 | } |
||
| 1752 | |||
| 1753 | /** |
||
| 1754 | * Performs modular exponentiation. |
||
| 1755 | * |
||
| 1756 | * Alias for modPow(). |
||
| 1757 | * |
||
| 1758 | * @param \phpseclib\Math\BigInteger $e |
||
| 1759 | * @param \phpseclib\Math\BigInteger $n |
||
| 1760 | * @return \phpseclib\Math\BigInteger |
||
| 1761 | * @access public |
||
| 1762 | */ |
||
| 1763 | public function powMod($e, $n) |
||
| 1764 | { |
||
| 1765 | return $this->modPow($e, $n); |
||
| 1766 | } |
||
| 1767 | |||
| 1768 | /** |
||
| 1769 | * Sliding Window k-ary Modular Exponentiation |
||
| 1770 | * |
||
| 1771 | * Based on {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=27 HAC 14.85} / |
||
| 1772 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=210 MPM 7.7}. In a departure from those algorithims, |
||
| 1773 | * however, this function performs a modular reduction after every multiplication and squaring operation. |
||
| 1774 | * As such, this function has the same preconditions that the reductions being used do. |
||
| 1775 | * |
||
| 1776 | * @param \phpseclib\Math\BigInteger $e |
||
| 1777 | * @param \phpseclib\Math\BigInteger $n |
||
| 1778 | * @param int $mode |
||
| 1779 | * @return \phpseclib\Math\BigInteger |
||
| 1780 | * @access private |
||
| 1781 | */ |
||
| 1782 | public function _slidingWindow($e, $n, $mode) |
||
| 1783 | { |
||
| 1784 | static $window_ranges = array(7, 25, 81, 241, 673, 1793); // from BigInteger.java's oddModPow function |
||
| 1785 | //static $window_ranges = array(0, 7, 36, 140, 450, 1303, 3529); // from MPM 7.3.1 |
||
| 1786 | |||
| 1787 | $e_value = $e->value; |
||
| 1788 | $e_length = count($e_value) - 1; |
||
| 1789 | $e_bits = decbin($e_value[$e_length]); |
||
| 1790 | for ($i = $e_length - 1; $i >= 0; --$i) { |
||
| 1791 | $e_bits.= str_pad(decbin($e_value[$i]), self::$base, '0', STR_PAD_LEFT); |
||
| 1792 | } |
||
| 1793 | |||
| 1794 | $e_length = strlen($e_bits); |
||
| 1795 | |||
| 1796 | // calculate the appropriate window size. |
||
| 1797 | // $window_size == 3 if $window_ranges is between 25 and 81, for example. |
||
| 1798 | for ($i = 0, $window_size = 1; $i < count($window_ranges) && $e_length > $window_ranges[$i]; ++$window_size, ++$i) { |
||
| 1799 | } |
||
| 1800 | |||
| 1801 | $n_value = $n->value; |
||
| 1802 | |||
| 1803 | // precompute $this^0 through $this^$window_size |
||
| 1804 | $powers = array(); |
||
| 1805 | $powers[1] = $this->_prepareReduce($this->value, $n_value, $mode); |
||
| 1806 | $powers[2] = $this->_squareReduce($powers[1], $n_value, $mode); |
||
| 1807 | |||
| 1808 | // we do every other number since substr($e_bits, $i, $j+1) (see below) is supposed to end |
||
| 1809 | // in a 1. ie. it's supposed to be odd. |
||
| 1810 | $temp = 1 << ($window_size - 1); |
||
| 1811 | for ($i = 1; $i < $temp; ++$i) { |
||
| 1812 | $i2 = $i << 1; |
||
| 1813 | $powers[$i2 + 1] = $this->_multiplyReduce($powers[$i2 - 1], $powers[2], $n_value, $mode); |
||
| 1814 | } |
||
| 1815 | |||
| 1816 | $result = array(1); |
||
| 1817 | $result = $this->_prepareReduce($result, $n_value, $mode); |
||
| 1818 | |||
| 1819 | for ($i = 0; $i < $e_length;) { |
||
| 1820 | if (!$e_bits[$i]) { |
||
| 1821 | $result = $this->_squareReduce($result, $n_value, $mode); |
||
| 1822 | ++$i; |
||
| 1823 | } else { |
||
| 1824 | for ($j = $window_size - 1; $j > 0; --$j) { |
||
| 1825 | if (!empty($e_bits[$i + $j])) { |
||
| 1826 | break; |
||
| 1827 | } |
||
| 1828 | } |
||
| 1829 | |||
| 1830 | // eg. the length of substr($e_bits, $i, $j + 1) |
||
| 1831 | for ($k = 0; $k <= $j; ++$k) { |
||
| 1832 | $result = $this->_squareReduce($result, $n_value, $mode); |
||
| 1833 | } |
||
| 1834 | |||
| 1835 | $result = $this->_multiplyReduce($result, $powers[bindec(substr($e_bits, $i, $j + 1))], $n_value, $mode); |
||
| 1836 | |||
| 1837 | $i += $j + 1; |
||
| 1838 | } |
||
| 1839 | } |
||
| 1840 | |||
| 1841 | $temp = new static(); |
||
| 1842 | $temp->value = $this->_reduce($result, $n_value, $mode); |
||
| 1843 | |||
| 1844 | return $temp; |
||
| 1845 | } |
||
| 1846 | |||
| 1847 | /** |
||
| 1848 | * Modular reduction |
||
| 1849 | * |
||
| 1850 | * For most $modes this will return the remainder. |
||
| 1851 | * |
||
| 1852 | * @see self::_slidingWindow() |
||
| 1853 | * @access private |
||
| 1854 | * @param array $x |
||
| 1855 | * @param array $n |
||
| 1856 | * @param int $mode |
||
| 1857 | * @return array |
||
| 1858 | */ |
||
| 1859 | public function _reduce($x, $n, $mode) |
||
| 1860 | { |
||
| 1861 | switch ($mode) { |
||
| 1862 | case self::MONTGOMERY: |
||
| 1863 | return $this->_montgomery($x, $n); |
||
| 1864 | case self::BARRETT: |
||
| 1865 | return $this->_barrett($x, $n); |
||
| 1866 | case self::POWEROF2: |
||
| 1867 | $lhs = new static(); |
||
| 1868 | $lhs->value = $x; |
||
| 1869 | $rhs = new static(); |
||
| 1870 | $rhs->value = $n; |
||
| 1871 | return $x->_mod2($n); |
||
| 1872 | case self::CLASSIC: |
||
| 1873 | $lhs = new static(); |
||
| 1874 | $lhs->value = $x; |
||
| 1875 | $rhs = new static(); |
||
| 1876 | $rhs->value = $n; |
||
| 1877 | list(, $temp) = $lhs->divide($rhs); |
||
| 1878 | return $temp->value; |
||
| 1879 | case self::NONE: |
||
| 1880 | return $x; |
||
| 1881 | default: |
||
| 1882 | // an invalid $mode was provided |
||
| 1883 | } |
||
| 1884 | } |
||
| 1885 | |||
| 1886 | /** |
||
| 1887 | * Modular reduction preperation |
||
| 1888 | * |
||
| 1889 | * @see self::_slidingWindow() |
||
| 1890 | * @access private |
||
| 1891 | * @param array $x |
||
| 1892 | * @param array $n |
||
| 1893 | * @param int $mode |
||
| 1894 | * @return array |
||
| 1895 | */ |
||
| 1896 | public function _prepareReduce($x, $n, $mode) |
||
| 1897 | { |
||
| 1898 | if ($mode == self::MONTGOMERY) { |
||
| 1899 | return $this->_prepMontgomery($x, $n); |
||
| 1900 | } |
||
| 1901 | return $this->_reduce($x, $n, $mode); |
||
| 1902 | } |
||
| 1903 | |||
| 1904 | /** |
||
| 1905 | * Modular multiply |
||
| 1906 | * |
||
| 1907 | * @see self::_slidingWindow() |
||
| 1908 | * @access private |
||
| 1909 | * @param array $x |
||
| 1910 | * @param array $y |
||
| 1911 | * @param array $n |
||
| 1912 | * @param int $mode |
||
| 1913 | * @return array |
||
| 1914 | */ |
||
| 1915 | public function _multiplyReduce($x, $y, $n, $mode) |
||
| 1916 | { |
||
| 1917 | if ($mode == self::MONTGOMERY) { |
||
| 1918 | return $this->_montgomeryMultiply($x, $y, $n); |
||
| 1919 | } |
||
| 1920 | $temp = $this->_multiply($x, false, $y, false); |
||
| 1921 | return $this->_reduce($temp[self::VALUE], $n, $mode); |
||
| 1922 | } |
||
| 1923 | |||
| 1924 | /** |
||
| 1925 | * Modular square |
||
| 1926 | * |
||
| 1927 | * @see self::_slidingWindow() |
||
| 1928 | * @access private |
||
| 1929 | * @param array $x |
||
| 1930 | * @param array $n |
||
| 1931 | * @param int $mode |
||
| 1932 | * @return array |
||
| 1933 | */ |
||
| 1934 | public function _squareReduce($x, $n, $mode) |
||
| 1935 | { |
||
| 1936 | if ($mode == self::MONTGOMERY) { |
||
| 1937 | return $this->_montgomeryMultiply($x, $x, $n); |
||
| 1938 | } |
||
| 1939 | return $this->_reduce($this->_square($x), $n, $mode); |
||
| 1940 | } |
||
| 1941 | |||
| 1942 | /** |
||
| 1943 | * Modulos for Powers of Two |
||
| 1944 | * |
||
| 1945 | * Calculates $x%$n, where $n = 2**$e, for some $e. Since this is basically the same as doing $x & ($n-1), |
||
| 1946 | * we'll just use this function as a wrapper for doing that. |
||
| 1947 | * |
||
| 1948 | * @see self::_slidingWindow() |
||
| 1949 | * @access private |
||
| 1950 | * @param \phpseclib\Math\BigInteger |
||
| 1951 | * @return \phpseclib\Math\BigInteger |
||
| 1952 | */ |
||
| 1953 | public function _mod2($n) |
||
| 1954 | { |
||
| 1955 | $temp = new static(); |
||
| 1956 | $temp->value = array(1); |
||
| 1957 | return $this->bitwise_and($n->subtract($temp)); |
||
| 1958 | } |
||
| 1959 | |||
| 1960 | /** |
||
| 1961 | * Barrett Modular Reduction |
||
| 1962 | * |
||
| 1963 | * See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=14 HAC 14.3.3} / |
||
| 1964 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=165 MPM 6.2.5} for more information. Modified slightly, |
||
| 1965 | * so as not to require negative numbers (initially, this script didn't support negative numbers). |
||
| 1966 | * |
||
| 1967 | * Employs "folding", as described at |
||
| 1968 | * {@link http://www.cosic.esat.kuleuven.be/publications/thesis-149.pdf#page=66 thesis-149.pdf#page=66}. To quote from |
||
| 1969 | * it, "the idea [behind folding] is to find a value x' such that x (mod m) = x' (mod m), with x' being smaller than x." |
||
| 1970 | * |
||
| 1971 | * Unfortunately, the "Barrett Reduction with Folding" algorithm described in thesis-149.pdf is not, as written, all that |
||
| 1972 | * usable on account of (1) its not using reasonable radix points as discussed in |
||
| 1973 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=162 MPM 6.2.2} and (2) the fact that, even with reasonable |
||
| 1974 | * radix points, it only works when there are an even number of digits in the denominator. The reason for (2) is that |
||
| 1975 | * (x >> 1) + (x >> 1) != x / 2 + x / 2. If x is even, they're the same, but if x is odd, they're not. See the in-line |
||
| 1976 | * comments for details. |
||
| 1977 | * |
||
| 1978 | * @see self::_slidingWindow() |
||
| 1979 | * @access private |
||
| 1980 | * @param array $n |
||
| 1981 | * @param array $m |
||
| 1982 | * @return array |
||
| 1983 | */ |
||
| 1984 | public function _barrett($n, $m) |
||
| 1985 | { |
||
| 1986 | static $cache = array( |
||
| 1987 | self::VARIABLE => array(), |
||
| 1988 | self::DATA => array() |
||
| 1989 | ); |
||
| 1990 | |||
| 1991 | $m_length = count($m); |
||
| 1992 | |||
| 1993 | // if ($this->_compare($n, $this->_square($m)) >= 0) { |
||
| 1994 | if (count($n) > 2 * $m_length) { |
||
| 1995 | $lhs = new static(); |
||
| 1996 | $rhs = new static(); |
||
| 1997 | $lhs->value = $n; |
||
| 1998 | $rhs->value = $m; |
||
| 1999 | list(, $temp) = $lhs->divide($rhs); |
||
| 2000 | return $temp->value; |
||
| 2001 | } |
||
| 2002 | |||
| 2003 | // if (m.length >> 1) + 2 <= m.length then m is too small and n can't be reduced |
||
| 2004 | if ($m_length < 5) { |
||
| 2005 | return $this->_regularBarrett($n, $m); |
||
| 2006 | } |
||
| 2007 | |||
| 2008 | // n = 2 * m.length |
||
| 2009 | |||
| 2010 | if (($key = array_search($m, $cache[self::VARIABLE])) === false) { |
||
| 2011 | $key = count($cache[self::VARIABLE]); |
||
| 2012 | $cache[self::VARIABLE][] = $m; |
||
| 2013 | |||
| 2014 | $lhs = new static(); |
||
| 2015 | $lhs_value = &$lhs->value; |
||
| 2016 | $lhs_value = $this->_array_repeat(0, $m_length + ($m_length >> 1)); |
||
| 2017 | $lhs_value[] = 1; |
||
| 2018 | $rhs = new static(); |
||
| 2019 | $rhs->value = $m; |
||
| 2020 | |||
| 2021 | list($u, $m1) = $lhs->divide($rhs); |
||
| 2022 | $u = $u->value; |
||
| 2023 | $m1 = $m1->value; |
||
| 2024 | |||
| 2025 | $cache[self::DATA][] = array( |
||
| 2026 | 'u' => $u, // m.length >> 1 (technically (m.length >> 1) + 1) |
||
| 2027 | 'm1'=> $m1 // m.length |
||
| 2028 | ); |
||
| 2029 | } else { |
||
| 2030 | extract($cache[self::DATA][$key]); |
||
| 2031 | } |
||
| 2032 | |||
| 2033 | $cutoff = $m_length + ($m_length >> 1); |
||
| 2034 | $lsd = array_slice($n, 0, $cutoff); // m.length + (m.length >> 1) |
||
| 2035 | $msd = array_slice($n, $cutoff); // m.length >> 1 |
||
| 2036 | $lsd = $this->_trim($lsd); |
||
| 2037 | $temp = $this->_multiply($msd, false, $m1, false); |
||
| 2038 | $n = $this->_add($lsd, false, $temp[self::VALUE], false); // m.length + (m.length >> 1) + 1 |
||
| 2039 | |||
| 2040 | if ($m_length & 1) { |
||
| 2041 | return $this->_regularBarrett($n[self::VALUE], $m); |
||
| 2042 | } |
||
| 2043 | |||
| 2044 | // (m.length + (m.length >> 1) + 1) - (m.length - 1) == (m.length >> 1) + 2 |
||
| 2045 | $temp = array_slice($n[self::VALUE], $m_length - 1); |
||
| 2046 | // if even: ((m.length >> 1) + 2) + (m.length >> 1) == m.length + 2 |
||
| 2047 | // if odd: ((m.length >> 1) + 2) + (m.length >> 1) == (m.length - 1) + 2 == m.length + 1 |
||
| 2048 | $temp = $this->_multiply($temp, false, $u, false); |
||
| 2049 | // if even: (m.length + 2) - ((m.length >> 1) + 1) = m.length - (m.length >> 1) + 1 |
||
| 2050 | // if odd: (m.length + 1) - ((m.length >> 1) + 1) = m.length - (m.length >> 1) |
||
| 2051 | $temp = array_slice($temp[self::VALUE], ($m_length >> 1) + 1); |
||
| 2052 | // if even: (m.length - (m.length >> 1) + 1) + m.length = 2 * m.length - (m.length >> 1) + 1 |
||
| 2053 | // if odd: (m.length - (m.length >> 1)) + m.length = 2 * m.length - (m.length >> 1) |
||
| 2054 | $temp = $this->_multiply($temp, false, $m, false); |
||
| 2055 | |||
| 2056 | // at this point, if m had an odd number of digits, we'd be subtracting a 2 * m.length - (m.length >> 1) digit |
||
| 2057 | // number from a m.length + (m.length >> 1) + 1 digit number. ie. there'd be an extra digit and the while loop |
||
| 2058 | // following this comment would loop a lot (hence our calling _regularBarrett() in that situation). |
||
| 2059 | |||
| 2060 | $result = $this->_subtract($n[self::VALUE], false, $temp[self::VALUE], false); |
||
| 2061 | |||
| 2062 | while ($this->_compare($result[self::VALUE], $result[self::SIGN], $m, false) >= 0) { |
||
| 2063 | $result = $this->_subtract($result[self::VALUE], $result[self::SIGN], $m, false); |
||
| 2064 | } |
||
| 2065 | |||
| 2066 | return $result[self::VALUE]; |
||
| 2067 | } |
||
| 2068 | |||
| 2069 | /** |
||
| 2070 | * (Regular) Barrett Modular Reduction |
||
| 2071 | * |
||
| 2072 | * For numbers with more than four digits BigInteger::_barrett() is faster. The difference between that and this |
||
| 2073 | * is that this function does not fold the denominator into a smaller form. |
||
| 2074 | * |
||
| 2075 | * @see self::_slidingWindow() |
||
| 2076 | * @access private |
||
| 2077 | * @param array $x |
||
| 2078 | * @param array $n |
||
| 2079 | * @return array |
||
| 2080 | */ |
||
| 2081 | public function _regularBarrett($x, $n) |
||
| 2082 | { |
||
| 2083 | static $cache = array( |
||
| 2084 | self::VARIABLE => array(), |
||
| 2085 | self::DATA => array() |
||
| 2086 | ); |
||
| 2087 | |||
| 2088 | $n_length = count($n); |
||
| 2089 | |||
| 2090 | if (count($x) > 2 * $n_length) { |
||
| 2091 | $lhs = new static(); |
||
| 2092 | $rhs = new static(); |
||
| 2093 | $lhs->value = $x; |
||
| 2094 | $rhs->value = $n; |
||
| 2095 | list(, $temp) = $lhs->divide($rhs); |
||
| 2096 | return $temp->value; |
||
| 2097 | } |
||
| 2098 | |||
| 2099 | if (($key = array_search($n, $cache[self::VARIABLE])) === false) { |
||
| 2100 | $key = count($cache[self::VARIABLE]); |
||
| 2101 | $cache[self::VARIABLE][] = $n; |
||
| 2102 | $lhs = new static(); |
||
| 2103 | $lhs_value = &$lhs->value; |
||
| 2104 | $lhs_value = $this->_array_repeat(0, 2 * $n_length); |
||
| 2105 | $lhs_value[] = 1; |
||
| 2106 | $rhs = new static(); |
||
| 2107 | $rhs->value = $n; |
||
| 2108 | list($temp, ) = $lhs->divide($rhs); // m.length |
||
| 2109 | $cache[self::DATA][] = $temp->value; |
||
| 2110 | } |
||
| 2111 | |||
| 2112 | // 2 * m.length - (m.length - 1) = m.length + 1 |
||
| 2113 | $temp = array_slice($x, $n_length - 1); |
||
| 2114 | // (m.length + 1) + m.length = 2 * m.length + 1 |
||
| 2115 | $temp = $this->_multiply($temp, false, $cache[self::DATA][$key], false); |
||
| 2116 | // (2 * m.length + 1) - (m.length - 1) = m.length + 2 |
||
| 2117 | $temp = array_slice($temp[self::VALUE], $n_length + 1); |
||
| 2118 | |||
| 2119 | // m.length + 1 |
||
| 2120 | $result = array_slice($x, 0, $n_length + 1); |
||
| 2121 | // m.length + 1 |
||
| 2122 | $temp = $this->_multiplyLower($temp, false, $n, false, $n_length + 1); |
||
| 2123 | // $temp == array_slice($temp->_multiply($temp, false, $n, false)->value, 0, $n_length + 1) |
||
| 2124 | |||
| 2125 | if ($this->_compare($result, false, $temp[self::VALUE], $temp[self::SIGN]) < 0) { |
||
| 2126 | $corrector_value = $this->_array_repeat(0, $n_length + 1); |
||
| 2127 | $corrector_value[count($corrector_value)] = 1; |
||
| 2128 | $result = $this->_add($result, false, $corrector_value, false); |
||
| 2129 | $result = $result[self::VALUE]; |
||
| 2130 | } |
||
| 2131 | |||
| 2132 | // at this point, we're subtracting a number with m.length + 1 digits from another number with m.length + 1 digits |
||
| 2133 | $result = $this->_subtract($result, false, $temp[self::VALUE], $temp[self::SIGN]); |
||
| 2134 | while ($this->_compare($result[self::VALUE], $result[self::SIGN], $n, false) > 0) { |
||
| 2135 | $result = $this->_subtract($result[self::VALUE], $result[self::SIGN], $n, false); |
||
| 2136 | } |
||
| 2137 | |||
| 2138 | return $result[self::VALUE]; |
||
| 2139 | } |
||
| 2140 | |||
| 2141 | /** |
||
| 2142 | * Performs long multiplication up to $stop digits |
||
| 2143 | * |
||
| 2144 | * If you're going to be doing array_slice($product->value, 0, $stop), some cycles can be saved. |
||
| 2145 | * |
||
| 2146 | * @see self::_regularBarrett() |
||
| 2147 | * @param array $x_value |
||
| 2148 | * @param bool $x_negative |
||
| 2149 | * @param array $y_value |
||
| 2150 | * @param bool $y_negative |
||
| 2151 | * @param int $stop |
||
| 2152 | * @return array |
||
| 2153 | * @access private |
||
| 2154 | */ |
||
| 2155 | public function _multiplyLower($x_value, $x_negative, $y_value, $y_negative, $stop) |
||
| 2156 | { |
||
| 2157 | $x_length = count($x_value); |
||
| 2158 | $y_length = count($y_value); |
||
| 2159 | |||
| 2160 | if (!$x_length || !$y_length) { // a 0 is being multiplied |
||
| 2161 | return array( |
||
| 2162 | self::VALUE => array(), |
||
| 2163 | self::SIGN => false |
||
| 2164 | ); |
||
| 2165 | } |
||
| 2166 | |||
| 2167 | if ($x_length < $y_length) { |
||
| 2168 | $temp = $x_value; |
||
| 2169 | $x_value = $y_value; |
||
| 2170 | $y_value = $temp; |
||
| 2171 | |||
| 2172 | $x_length = count($x_value); |
||
| 2173 | $y_length = count($y_value); |
||
| 2174 | } |
||
| 2175 | |||
| 2176 | $product_value = $this->_array_repeat(0, $x_length + $y_length); |
||
| 2177 | |||
| 2178 | // the following for loop could be removed if the for loop following it |
||
| 2179 | // (the one with nested for loops) initially set $i to 0, but |
||
| 2180 | // doing so would also make the result in one set of unnecessary adds, |
||
| 2181 | // since on the outermost loops first pass, $product->value[$k] is going |
||
| 2182 | // to always be 0 |
||
| 2183 | |||
| 2184 | $carry = 0; |
||
| 2185 | |||
| 2186 | for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0, $k = $i |
||
| 2187 | $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0 |
||
| 2188 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 2189 | $product_value[$j] = (int) ($temp - self::$baseFull * $carry); |
||
| 2190 | } |
||
| 2191 | |||
| 2192 | if ($j < $stop) { |
||
| 2193 | $product_value[$j] = $carry; |
||
| 2194 | } |
||
| 2195 | |||
| 2196 | // the above for loop is what the previous comment was talking about. the |
||
| 2197 | // following for loop is the "one with nested for loops" |
||
| 2198 | |||
| 2199 | for ($i = 1; $i < $y_length; ++$i) { |
||
| 2200 | $carry = 0; |
||
| 2201 | |||
| 2202 | for ($j = 0, $k = $i; $j < $x_length && $k < $stop; ++$j, ++$k) { |
||
| 2203 | $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry; |
||
| 2204 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 2205 | $product_value[$k] = (int) ($temp - self::$baseFull * $carry); |
||
| 2206 | } |
||
| 2207 | |||
| 2208 | if ($k < $stop) { |
||
| 2209 | $product_value[$k] = $carry; |
||
| 2210 | } |
||
| 2211 | } |
||
| 2212 | |||
| 2213 | return array( |
||
| 2214 | self::VALUE => $this->_trim($product_value), |
||
| 2215 | self::SIGN => $x_negative != $y_negative |
||
| 2216 | ); |
||
| 2217 | } |
||
| 2218 | |||
| 2219 | /** |
||
| 2220 | * Montgomery Modular Reduction |
||
| 2221 | * |
||
| 2222 | * ($x->_prepMontgomery($n))->_montgomery($n) yields $x % $n. |
||
| 2223 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=170 MPM 6.3} provides insights on how this can be |
||
| 2224 | * improved upon (basically, by using the comba method). gcd($n, 2) must be equal to one for this function |
||
| 2225 | * to work correctly. |
||
| 2226 | * |
||
| 2227 | * @see self::_prepMontgomery() |
||
| 2228 | * @see self::_slidingWindow() |
||
| 2229 | * @access private |
||
| 2230 | * @param array $x |
||
| 2231 | * @param array $n |
||
| 2232 | * @return array |
||
| 2233 | */ |
||
| 2234 | public function _montgomery($x, $n) |
||
| 2235 | { |
||
| 2236 | static $cache = array( |
||
| 2237 | self::VARIABLE => array(), |
||
| 2238 | self::DATA => array() |
||
| 2239 | ); |
||
| 2240 | |||
| 2241 | if (($key = array_search($n, $cache[self::VARIABLE])) === false) { |
||
| 2242 | $key = count($cache[self::VARIABLE]); |
||
| 2243 | $cache[self::VARIABLE][] = $x; |
||
| 2244 | $cache[self::DATA][] = $this->_modInverse67108864($n); |
||
| 2245 | } |
||
| 2246 | |||
| 2247 | $k = count($n); |
||
| 2248 | |||
| 2249 | $result = array(self::VALUE => $x); |
||
| 2250 | |||
| 2251 | for ($i = 0; $i < $k; ++$i) { |
||
| 2252 | $temp = $result[self::VALUE][$i] * $cache[self::DATA][$key]; |
||
| 2253 | $temp = $temp - self::$baseFull * (self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31)); |
||
| 2254 | $temp = $this->_regularMultiply(array($temp), $n); |
||
| 2255 | $temp = array_merge($this->_array_repeat(0, $i), $temp); |
||
| 2256 | $result = $this->_add($result[self::VALUE], false, $temp, false); |
||
| 2257 | } |
||
| 2258 | |||
| 2259 | $result[self::VALUE] = array_slice($result[self::VALUE], $k); |
||
| 2260 | |||
| 2261 | if ($this->_compare($result, false, $n, false) >= 0) { |
||
| 2262 | $result = $this->_subtract($result[self::VALUE], false, $n, false); |
||
| 2263 | } |
||
| 2264 | |||
| 2265 | return $result[self::VALUE]; |
||
| 2266 | } |
||
| 2267 | |||
| 2268 | /** |
||
| 2269 | * Montgomery Multiply |
||
| 2270 | * |
||
| 2271 | * Interleaves the montgomery reduction and long multiplication algorithms together as described in |
||
| 2272 | * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=13 HAC 14.36} |
||
| 2273 | * |
||
| 2274 | * @see self::_prepMontgomery() |
||
| 2275 | * @see self::_montgomery() |
||
| 2276 | * @access private |
||
| 2277 | * @param array $x |
||
| 2278 | * @param array $y |
||
| 2279 | * @param array $m |
||
| 2280 | * @return array |
||
| 2281 | */ |
||
| 2282 | public function _montgomeryMultiply($x, $y, $m) |
||
| 2283 | { |
||
| 2284 | $temp = $this->_multiply($x, false, $y, false); |
||
| 2285 | return $this->_montgomery($temp[self::VALUE], $m); |
||
| 2286 | |||
| 2287 | // the following code, although not callable, can be run independently of the above code |
||
| 2288 | // although the above code performed better in my benchmarks the following could might |
||
| 2289 | // perform better under different circumstances. in lieu of deleting it it's just been |
||
| 2290 | // made uncallable |
||
| 2291 | |||
| 2292 | static $cache = array( |
||
| 2293 | self::VARIABLE => array(), |
||
| 2294 | self::DATA => array() |
||
| 2295 | ); |
||
| 2296 | |||
| 2297 | if (($key = array_search($m, $cache[self::VARIABLE])) === false) { |
||
| 2298 | $key = count($cache[self::VARIABLE]); |
||
| 2299 | $cache[self::VARIABLE][] = $m; |
||
| 2300 | $cache[self::DATA][] = $this->_modInverse67108864($m); |
||
| 2301 | } |
||
| 2302 | |||
| 2303 | $n = max(count($x), count($y), count($m)); |
||
| 2304 | $x = array_pad($x, $n, 0); |
||
| 2305 | $y = array_pad($y, $n, 0); |
||
| 2306 | $m = array_pad($m, $n, 0); |
||
| 2307 | $a = array(self::VALUE => $this->_array_repeat(0, $n + 1)); |
||
| 2308 | for ($i = 0; $i < $n; ++$i) { |
||
| 2309 | $temp = $a[self::VALUE][0] + $x[$i] * $y[0]; |
||
| 2310 | $temp = $temp - self::$baseFull * (self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31)); |
||
| 2311 | $temp = $temp * $cache[self::DATA][$key]; |
||
| 2312 | $temp = $temp - self::$baseFull * (self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31)); |
||
| 2313 | $temp = $this->_add($this->_regularMultiply(array($x[$i]), $y), false, $this->_regularMultiply(array($temp), $m), false); |
||
| 2314 | $a = $this->_add($a[self::VALUE], false, $temp[self::VALUE], false); |
||
| 2315 | $a[self::VALUE] = array_slice($a[self::VALUE], 1); |
||
| 2316 | } |
||
| 2317 | if ($this->_compare($a[self::VALUE], false, $m, false) >= 0) { |
||
| 2318 | $a = $this->_subtract($a[self::VALUE], false, $m, false); |
||
| 2319 | } |
||
| 2320 | return $a[self::VALUE]; |
||
| 2321 | } |
||
| 2322 | |||
| 2323 | /** |
||
| 2324 | * Prepare a number for use in Montgomery Modular Reductions |
||
| 2325 | * |
||
| 2326 | * @see self::_montgomery() |
||
| 2327 | * @see self::_slidingWindow() |
||
| 2328 | * @access private |
||
| 2329 | * @param array $x |
||
| 2330 | * @param array $n |
||
| 2331 | * @return array |
||
| 2332 | */ |
||
| 2333 | public function _prepMontgomery($x, $n) |
||
| 2334 | { |
||
| 2335 | $lhs = new static(); |
||
| 2336 | $lhs->value = array_merge($this->_array_repeat(0, count($n)), $x); |
||
| 2337 | $rhs = new static(); |
||
| 2338 | $rhs->value = $n; |
||
| 2339 | |||
| 2340 | list(, $temp) = $lhs->divide($rhs); |
||
| 2341 | return $temp->value; |
||
| 2342 | } |
||
| 2343 | |||
| 2344 | /** |
||
| 2345 | * Modular Inverse of a number mod 2**26 (eg. 67108864) |
||
| 2346 | * |
||
| 2347 | * Based off of the bnpInvDigit function implemented and justified in the following URL: |
||
| 2348 | * |
||
| 2349 | * {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js} |
||
| 2350 | * |
||
| 2351 | * The following URL provides more info: |
||
| 2352 | * |
||
| 2353 | * {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85} |
||
| 2354 | * |
||
| 2355 | * As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For |
||
| 2356 | * instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields |
||
| 2357 | * int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't |
||
| 2358 | * auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that |
||
| 2359 | * the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the |
||
| 2360 | * maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to |
||
| 2361 | * 40 bits, which only 64-bit floating points will support. |
||
| 2362 | * |
||
| 2363 | * Thanks to Pedro Gimeno Fortea for input! |
||
| 2364 | * |
||
| 2365 | * @see self::_montgomery() |
||
| 2366 | * @access private |
||
| 2367 | * @param array $x |
||
| 2368 | * @return int |
||
| 2369 | */ |
||
| 2370 | public function _modInverse67108864($x) // 2**26 == 67,108,864 |
||
| 2371 | { |
||
| 2372 | $x = -$x[0]; |
||
| 2373 | $result = $x & 0x3; // x**-1 mod 2**2 |
||
| 2374 | $result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4 |
||
| 2375 | $result = ($result * (2 - ($x & 0xFF) * $result)) & 0xFF; // x**-1 mod 2**8 |
||
| 2376 | $result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 0xFFFF; // x**-1 mod 2**16 |
||
| 2377 | $result = fmod($result * (2 - fmod($x * $result, self::$baseFull)), self::$baseFull); // x**-1 mod 2**26 |
||
| 2378 | return $result & self::$maxDigit; |
||
| 2379 | } |
||
| 2380 | |||
| 2381 | /** |
||
| 2382 | * Calculates modular inverses. |
||
| 2383 | * |
||
| 2384 | * Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses. |
||
| 2385 | * |
||
| 2386 | * Here's an example: |
||
| 2387 | * <code> |
||
| 2388 | * <?php |
||
| 2389 | * $a = new \phpseclib\Math\BigInteger(30); |
||
| 2390 | * $b = new \phpseclib\Math\BigInteger(17); |
||
| 2391 | * |
||
| 2392 | * $c = $a->modInverse($b); |
||
| 2393 | * echo $c->toString(); // outputs 4 |
||
| 2394 | * |
||
| 2395 | * echo "\r\n"; |
||
| 2396 | * |
||
| 2397 | * $d = $a->multiply($c); |
||
| 2398 | * list(, $d) = $d->divide($b); |
||
| 2399 | * echo $d; // outputs 1 (as per the definition of modular inverse) |
||
| 2400 | * ?> |
||
| 2401 | * </code> |
||
| 2402 | * |
||
| 2403 | * @param \phpseclib\Math\BigInteger $n |
||
| 2404 | * @return \phpseclib\Math\BigInteger|false |
||
| 2405 | * @access public |
||
| 2406 | * @internal See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=21 HAC 14.64} for more information. |
||
| 2407 | */ |
||
| 2408 | public function modInverse($n) |
||
| 2409 | { |
||
| 2410 | switch (MATH_BIGINTEGER_MODE) { |
||
| 2411 | case self::MODE_GMP: |
||
| 2412 | $temp = new static(); |
||
| 2413 | $temp->value = gmp_invert($this->value, $n->value); |
||
| 2414 | |||
| 2415 | return ($temp->value === false) ? false : $this->_normalize($temp); |
||
| 2416 | } |
||
| 2417 | |||
| 2418 | static $zero, $one; |
||
| 2419 | if (!isset($zero)) { |
||
| 2420 | $zero = new static(); |
||
| 2421 | $one = new static(1); |
||
| 2422 | } |
||
| 2423 | |||
| 2424 | // $x mod -$n == $x mod $n. |
||
| 2425 | $n = $n->abs(); |
||
| 2426 | |||
| 2427 | if ($this->compare($zero) < 0) { |
||
| 2428 | $temp = $this->abs(); |
||
| 2429 | $temp = $temp->modInverse($n); |
||
| 2430 | return $this->_normalize($n->subtract($temp)); |
||
| 2431 | } |
||
| 2432 | |||
| 2433 | extract($this->extendedGCD($n)); |
||
| 2434 | |||
| 2435 | if (!$gcd->equals($one)) { |
||
| 2436 | return false; |
||
| 2437 | } |
||
| 2438 | |||
| 2439 | $x = $x->compare($zero) < 0 ? $x->add($n) : $x; |
||
| 2440 | |||
| 2441 | return $this->compare($zero) < 0 ? $this->_normalize($n->subtract($x)) : $this->_normalize($x); |
||
| 2442 | } |
||
| 2443 | |||
| 2444 | /** |
||
| 2445 | * Calculates the greatest common divisor and Bezout's identity. |
||
| 2446 | * |
||
| 2447 | * Say you have 693 and 609. The GCD is 21. Bezout's identity states that there exist integers x and y such that |
||
| 2448 | * 693*x + 609*y == 21. In point of fact, there are actually an infinite number of x and y combinations and which |
||
| 2449 | * combination is returned is dependent upon which mode is in use. See |
||
| 2450 | * {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information. |
||
| 2451 | * |
||
| 2452 | * Here's an example: |
||
| 2453 | * <code> |
||
| 2454 | * <?php |
||
| 2455 | * $a = new \phpseclib\Math\BigInteger(693); |
||
| 2456 | * $b = new \phpseclib\Math\BigInteger(609); |
||
| 2457 | * |
||
| 2458 | * extract($a->extendedGCD($b)); |
||
| 2459 | * |
||
| 2460 | * echo $gcd->toString() . "\r\n"; // outputs 21 |
||
| 2461 | * echo $a->toString() * $x->toString() + $b->toString() * $y->toString(); // outputs 21 |
||
| 2462 | * ?> |
||
| 2463 | * </code> |
||
| 2464 | * |
||
| 2465 | * @param \phpseclib\Math\BigInteger $n |
||
| 2466 | * @return \phpseclib\Math\BigInteger |
||
| 2467 | * @access public |
||
| 2468 | * @internal Calculates the GCD using the binary xGCD algorithim described in |
||
| 2469 | * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}. As the text above 14.61 notes, |
||
| 2470 | * the more traditional algorithim requires "relatively costly multiple-precision divisions". |
||
| 2471 | */ |
||
| 2472 | public function extendedGCD($n) |
||
| 2577 | ); |
||
| 2578 | } |
||
| 2579 | |||
| 2580 | /** |
||
| 2581 | * Calculates the greatest common divisor |
||
| 2582 | * |
||
| 2583 | * Say you have 693 and 609. The GCD is 21. |
||
| 2584 | * |
||
| 2585 | * Here's an example: |
||
| 2586 | * <code> |
||
| 2587 | * <?php |
||
| 2588 | * $a = new \phpseclib\Math\BigInteger(693); |
||
| 2589 | * $b = new \phpseclib\Math\BigInteger(609); |
||
| 2590 | * |
||
| 2591 | * $gcd = a->extendedGCD($b); |
||
| 2592 | * |
||
| 2593 | * echo $gcd->toString() . "\r\n"; // outputs 21 |
||
| 2594 | * ?> |
||
| 2595 | * </code> |
||
| 2596 | * |
||
| 2597 | * @param \phpseclib\Math\BigInteger $n |
||
| 2598 | * @return \phpseclib\Math\BigInteger |
||
| 2599 | * @access public |
||
| 2600 | */ |
||
| 2601 | public function gcd($n) |
||
| 2602 | { |
||
| 2603 | extract($this->extendedGCD($n)); |
||
| 2604 | return $gcd; |
||
| 2605 | } |
||
| 2606 | |||
| 2607 | /** |
||
| 2608 | * Absolute value. |
||
| 2609 | * |
||
| 2610 | * @return \phpseclib\Math\BigInteger |
||
| 2611 | * @access public |
||
| 2612 | */ |
||
| 2613 | public function abs() |
||
| 2614 | { |
||
| 2615 | $temp = new static(); |
||
| 2616 | |||
| 2617 | switch (MATH_BIGINTEGER_MODE) { |
||
| 2618 | case self::MODE_GMP: |
||
| 2619 | $temp->value = gmp_abs($this->value); |
||
| 2620 | break; |
||
| 2621 | case self::MODE_BCMATH: |
||
| 2622 | $temp->value = (bccomp($this->value, '0', 0) < 0) ? substr($this->value, 1) : $this->value; |
||
| 2623 | break; |
||
| 2624 | default: |
||
| 2625 | $temp->value = $this->value; |
||
| 2626 | } |
||
| 2627 | |||
| 2628 | return $temp; |
||
| 2629 | } |
||
| 2630 | |||
| 2631 | /** |
||
| 2632 | * Compares two numbers. |
||
| 2633 | * |
||
| 2634 | * Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is |
||
| 2635 | * demonstrated thusly: |
||
| 2636 | * |
||
| 2637 | * $x > $y: $x->compare($y) > 0 |
||
| 2638 | * $x < $y: $x->compare($y) < 0 |
||
| 2639 | * $x == $y: $x->compare($y) == 0 |
||
| 2640 | * |
||
| 2641 | * Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y). |
||
| 2642 | * |
||
| 2643 | * @param \phpseclib\Math\BigInteger $y |
||
| 2644 | * @return int < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal. |
||
| 2645 | * @access public |
||
| 2646 | * @see self::equals() |
||
| 2647 | * @internal Could return $this->subtract($x), but that's not as fast as what we do do. |
||
| 2648 | */ |
||
| 2649 | public function compare($y) |
||
| 2650 | { |
||
| 2651 | switch (MATH_BIGINTEGER_MODE) { |
||
| 2652 | case self::MODE_GMP: |
||
| 2653 | return gmp_cmp($this->value, $y->value); |
||
| 2654 | case self::MODE_BCMATH: |
||
| 2655 | return bccomp($this->value, $y->value, 0); |
||
| 2656 | } |
||
| 2657 | |||
| 2658 | return $this->_compare($this->value, $this->is_negative, $y->value, $y->is_negative); |
||
| 2659 | } |
||
| 2660 | |||
| 2661 | /** |
||
| 2662 | * Compares two numbers. |
||
| 2663 | * |
||
| 2664 | * @param array $x_value |
||
| 2665 | * @param bool $x_negative |
||
| 2666 | * @param array $y_value |
||
| 2667 | * @param bool $y_negative |
||
| 2668 | * @return int |
||
| 2669 | * @see self::compare() |
||
| 2670 | * @access private |
||
| 2671 | */ |
||
| 2672 | public function _compare($x_value, $x_negative, $y_value, $y_negative) |
||
| 2673 | { |
||
| 2674 | if ($x_negative != $y_negative) { |
||
| 2675 | return (!$x_negative && $y_negative) ? 1 : -1; |
||
| 2676 | } |
||
| 2677 | |||
| 2678 | $result = $x_negative ? -1 : 1; |
||
| 2679 | |||
| 2680 | if (count($x_value) != count($y_value)) { |
||
| 2681 | return (count($x_value) > count($y_value)) ? $result : -$result; |
||
| 2682 | } |
||
| 2683 | $size = max(count($x_value), count($y_value)); |
||
| 2684 | |||
| 2685 | $x_value = array_pad($x_value, $size, 0); |
||
| 2686 | $y_value = array_pad($y_value, $size, 0); |
||
| 2687 | |||
| 2688 | for ($i = count($x_value) - 1; $i >= 0; --$i) { |
||
| 2689 | if ($x_value[$i] != $y_value[$i]) { |
||
| 2690 | return ($x_value[$i] > $y_value[$i]) ? $result : -$result; |
||
| 2691 | } |
||
| 2692 | } |
||
| 2693 | |||
| 2694 | return 0; |
||
| 2695 | } |
||
| 2696 | |||
| 2697 | /** |
||
| 2698 | * Tests the equality of two numbers. |
||
| 2699 | * |
||
| 2700 | * If you need to see if one number is greater than or less than another number, use BigInteger::compare() |
||
| 2701 | * |
||
| 2702 | * @param \phpseclib\Math\BigInteger $x |
||
| 2703 | * @return bool |
||
| 2704 | * @access public |
||
| 2705 | * @see self::compare() |
||
| 2706 | */ |
||
| 2707 | public function equals($x) |
||
| 2708 | { |
||
| 2709 | switch (MATH_BIGINTEGER_MODE) { |
||
| 2710 | case self::MODE_GMP: |
||
| 2711 | return gmp_cmp($this->value, $x->value) == 0; |
||
| 2712 | default: |
||
| 2713 | return $this->value === $x->value && $this->is_negative == $x->is_negative; |
||
| 2714 | } |
||
| 2715 | } |
||
| 2716 | |||
| 2717 | /** |
||
| 2718 | * Set Precision |
||
| 2719 | * |
||
| 2720 | * Some bitwise operations give different results depending on the precision being used. Examples include left |
||
| 2721 | * shift, not, and rotates. |
||
| 2722 | * |
||
| 2723 | * @param int $bits |
||
| 2724 | * @access public |
||
| 2725 | */ |
||
| 2726 | public function setPrecision($bits) |
||
| 2727 | { |
||
| 2728 | $this->precision = $bits; |
||
| 2729 | if (MATH_BIGINTEGER_MODE != self::MODE_BCMATH) { |
||
| 2730 | $this->bitmask = new static(chr((1 << ($bits & 0x7)) - 1) . str_repeat(chr(0xFF), $bits >> 3), 256); |
||
| 2731 | } else { |
||
| 2732 | $this->bitmask = new static(bcpow('2', $bits, 0)); |
||
| 2733 | } |
||
| 2734 | |||
| 2735 | $temp = $this->_normalize($this); |
||
| 2736 | $this->value = $temp->value; |
||
| 2737 | } |
||
| 2738 | |||
| 2739 | /** |
||
| 2740 | * Logical And |
||
| 2741 | * |
||
| 2742 | * @param \phpseclib\Math\BigInteger $x |
||
| 2743 | * @access public |
||
| 2744 | * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat> |
||
| 2745 | * @return \phpseclib\Math\BigInteger |
||
| 2746 | */ |
||
| 2747 | public function bitwise_and($x) |
||
| 2748 | { |
||
| 2749 | switch (MATH_BIGINTEGER_MODE) { |
||
| 2750 | case self::MODE_GMP: |
||
| 2751 | $temp = new static(); |
||
| 2752 | $temp->value = gmp_and($this->value, $x->value); |
||
| 2753 | |||
| 2754 | return $this->_normalize($temp); |
||
| 2755 | case self::MODE_BCMATH: |
||
| 2756 | $left = $this->toBytes(); |
||
| 2757 | $right = $x->toBytes(); |
||
| 2758 | |||
| 2759 | $length = max(strlen($left), strlen($right)); |
||
| 2760 | |||
| 2761 | $left = str_pad($left, $length, chr(0), STR_PAD_LEFT); |
||
| 2762 | $right = str_pad($right, $length, chr(0), STR_PAD_LEFT); |
||
| 2763 | |||
| 2764 | return $this->_normalize(new static($left & $right, 256)); |
||
| 2765 | } |
||
| 2766 | |||
| 2767 | $result = $this->copy(); |
||
| 2768 | |||
| 2769 | $length = min(count($x->value), count($this->value)); |
||
| 2770 | |||
| 2771 | $result->value = array_slice($result->value, 0, $length); |
||
| 2772 | |||
| 2773 | for ($i = 0; $i < $length; ++$i) { |
||
| 2774 | $result->value[$i]&= $x->value[$i]; |
||
| 2775 | } |
||
| 2776 | |||
| 2777 | return $this->_normalize($result); |
||
| 2778 | } |
||
| 2779 | |||
| 2780 | /** |
||
| 2781 | * Logical Or |
||
| 2782 | * |
||
| 2783 | * @param \phpseclib\Math\BigInteger $x |
||
| 2784 | * @access public |
||
| 2785 | * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat> |
||
| 2786 | * @return \phpseclib\Math\BigInteger |
||
| 2787 | */ |
||
| 2788 | public function bitwise_or($x) |
||
| 2789 | { |
||
| 2790 | switch (MATH_BIGINTEGER_MODE) { |
||
| 2791 | case self::MODE_GMP: |
||
| 2792 | $temp = new static(); |
||
| 2793 | $temp->value = gmp_or($this->value, $x->value); |
||
| 2794 | |||
| 2795 | return $this->_normalize($temp); |
||
| 2796 | case self::MODE_BCMATH: |
||
| 2797 | $left = $this->toBytes(); |
||
| 2798 | $right = $x->toBytes(); |
||
| 2799 | |||
| 2800 | $length = max(strlen($left), strlen($right)); |
||
| 2801 | |||
| 2802 | $left = str_pad($left, $length, chr(0), STR_PAD_LEFT); |
||
| 2803 | $right = str_pad($right, $length, chr(0), STR_PAD_LEFT); |
||
| 2804 | |||
| 2805 | return $this->_normalize(new static($left | $right, 256)); |
||
| 2806 | } |
||
| 2807 | |||
| 2808 | $length = max(count($this->value), count($x->value)); |
||
| 2809 | $result = $this->copy(); |
||
| 2810 | $result->value = array_pad($result->value, $length, 0); |
||
| 2811 | $x->value = array_pad($x->value, $length, 0); |
||
| 2812 | |||
| 2813 | for ($i = 0; $i < $length; ++$i) { |
||
| 2814 | $result->value[$i]|= $x->value[$i]; |
||
| 2815 | } |
||
| 2816 | |||
| 2817 | return $this->_normalize($result); |
||
| 2818 | } |
||
| 2819 | |||
| 2820 | /** |
||
| 2821 | * Logical Exclusive-Or |
||
| 2822 | * |
||
| 2823 | * @param \phpseclib\Math\BigInteger $x |
||
| 2824 | * @access public |
||
| 2825 | * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat> |
||
| 2826 | * @return \phpseclib\Math\BigInteger |
||
| 2827 | */ |
||
| 2828 | public function bitwise_xor($x) |
||
| 2829 | { |
||
| 2830 | switch (MATH_BIGINTEGER_MODE) { |
||
| 2831 | case self::MODE_GMP: |
||
| 2832 | $temp = new static(); |
||
| 2833 | $temp->value = gmp_xor($this->value, $x->value); |
||
| 2834 | |||
| 2835 | return $this->_normalize($temp); |
||
| 2836 | case self::MODE_BCMATH: |
||
| 2837 | $left = $this->toBytes(); |
||
| 2838 | $right = $x->toBytes(); |
||
| 2839 | |||
| 2840 | $length = max(strlen($left), strlen($right)); |
||
| 2841 | |||
| 2842 | $left = str_pad($left, $length, chr(0), STR_PAD_LEFT); |
||
| 2843 | $right = str_pad($right, $length, chr(0), STR_PAD_LEFT); |
||
| 2844 | |||
| 2845 | return $this->_normalize(new static($left ^ $right, 256)); |
||
| 2846 | } |
||
| 2847 | |||
| 2848 | $length = max(count($this->value), count($x->value)); |
||
| 2849 | $result = $this->copy(); |
||
| 2850 | $result->value = array_pad($result->value, $length, 0); |
||
| 2851 | $x->value = array_pad($x->value, $length, 0); |
||
| 2852 | |||
| 2853 | for ($i = 0; $i < $length; ++$i) { |
||
| 2854 | $result->value[$i]^= $x->value[$i]; |
||
| 2855 | } |
||
| 2856 | |||
| 2857 | return $this->_normalize($result); |
||
| 2858 | } |
||
| 2859 | |||
| 2860 | /** |
||
| 2861 | * Logical Not |
||
| 2862 | * |
||
| 2863 | * @access public |
||
| 2864 | * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat> |
||
| 2865 | * @return \phpseclib\Math\BigInteger |
||
| 2866 | */ |
||
| 2867 | public function bitwise_not() |
||
| 2868 | { |
||
| 2869 | // calculuate "not" without regard to $this->precision |
||
| 2870 | // (will always result in a smaller number. ie. ~1 isn't 1111 1110 - it's 0) |
||
| 2871 | $temp = $this->toBytes(); |
||
| 2872 | if ($temp == '') { |
||
| 2873 | return ''; |
||
| 2874 | } |
||
| 2875 | $pre_msb = decbin(ord($temp[0])); |
||
| 2876 | $temp = ~$temp; |
||
| 2877 | $msb = decbin(ord($temp[0])); |
||
| 2878 | if (strlen($msb) == 8) { |
||
| 2879 | $msb = substr($msb, strpos($msb, '0')); |
||
| 2880 | } |
||
| 2881 | $temp[0] = chr(bindec($msb)); |
||
| 2882 | |||
| 2883 | // see if we need to add extra leading 1's |
||
| 2884 | $current_bits = strlen($pre_msb) + 8 * strlen($temp) - 8; |
||
| 2885 | $new_bits = $this->precision - $current_bits; |
||
| 2886 | if ($new_bits <= 0) { |
||
| 2887 | return $this->_normalize(new static($temp, 256)); |
||
| 2888 | } |
||
| 2889 | |||
| 2890 | // generate as many leading 1's as we need to. |
||
| 2891 | $leading_ones = chr((1 << ($new_bits & 0x7)) - 1) . str_repeat(chr(0xFF), $new_bits >> 3); |
||
| 2892 | $this->_base256_lshift($leading_ones, $current_bits); |
||
| 2893 | |||
| 2894 | $temp = str_pad($temp, strlen($leading_ones), chr(0), STR_PAD_LEFT); |
||
| 2895 | |||
| 2896 | return $this->_normalize(new static($leading_ones | $temp, 256)); |
||
| 2897 | } |
||
| 2898 | |||
| 2899 | /** |
||
| 2900 | * Logical Right Shift |
||
| 2901 | * |
||
| 2902 | * Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift. |
||
| 2903 | * |
||
| 2904 | * @param int $shift |
||
| 2905 | * @return \phpseclib\Math\BigInteger |
||
| 2906 | * @access public |
||
| 2907 | * @internal The only version that yields any speed increases is the internal version. |
||
| 2908 | */ |
||
| 2909 | public function bitwise_rightShift($shift) |
||
| 2910 | { |
||
| 2911 | $temp = new static(); |
||
| 2912 | |||
| 2913 | switch (MATH_BIGINTEGER_MODE) { |
||
| 2914 | case self::MODE_GMP: |
||
| 2915 | static $two; |
||
| 2916 | |||
| 2917 | if (!isset($two)) { |
||
| 2918 | $two = gmp_init('2'); |
||
| 2919 | } |
||
| 2920 | |||
| 2921 | $temp->value = gmp_div_q($this->value, gmp_pow($two, $shift)); |
||
| 2922 | |||
| 2923 | break; |
||
| 2924 | case self::MODE_BCMATH: |
||
| 2925 | $temp->value = bcdiv($this->value, bcpow('2', $shift, 0), 0); |
||
| 2926 | |||
| 2927 | break; |
||
| 2928 | default: // could just replace _lshift with this, but then all _lshift() calls would need to be rewritten |
||
| 2929 | // and I don't want to do that... |
||
| 2930 | $temp->value = $this->value; |
||
| 2931 | $temp->_rshift($shift); |
||
| 2932 | } |
||
| 2933 | |||
| 2934 | return $this->_normalize($temp); |
||
| 2935 | } |
||
| 2936 | |||
| 2937 | /** |
||
| 2938 | * Logical Left Shift |
||
| 2939 | * |
||
| 2940 | * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift. |
||
| 2941 | * |
||
| 2942 | * @param int $shift |
||
| 2943 | * @return \phpseclib\Math\BigInteger |
||
| 2944 | * @access public |
||
| 2945 | * @internal The only version that yields any speed increases is the internal version. |
||
| 2946 | */ |
||
| 2947 | public function bitwise_leftShift($shift) |
||
| 2948 | { |
||
| 2949 | $temp = new static(); |
||
| 2950 | |||
| 2951 | switch (MATH_BIGINTEGER_MODE) { |
||
| 2952 | case self::MODE_GMP: |
||
| 2953 | static $two; |
||
| 2954 | |||
| 2955 | if (!isset($two)) { |
||
| 2956 | $two = gmp_init('2'); |
||
| 2957 | } |
||
| 2958 | |||
| 2959 | $temp->value = gmp_mul($this->value, gmp_pow($two, $shift)); |
||
| 2960 | |||
| 2961 | break; |
||
| 2962 | case self::MODE_BCMATH: |
||
| 2963 | $temp->value = bcmul($this->value, bcpow('2', $shift, 0), 0); |
||
| 2964 | |||
| 2965 | break; |
||
| 2966 | default: // could just replace _rshift with this, but then all _lshift() calls would need to be rewritten |
||
| 2967 | // and I don't want to do that... |
||
| 2968 | $temp->value = $this->value; |
||
| 2969 | $temp->_lshift($shift); |
||
| 2970 | } |
||
| 2971 | |||
| 2972 | return $this->_normalize($temp); |
||
| 2973 | } |
||
| 2974 | |||
| 2975 | /** |
||
| 2976 | * Logical Left Rotate |
||
| 2977 | * |
||
| 2978 | * Instead of the top x bits being dropped they're appended to the shifted bit string. |
||
| 2979 | * |
||
| 2980 | * @param int $shift |
||
| 2981 | * @return \phpseclib\Math\BigInteger |
||
| 2982 | * @access public |
||
| 2983 | */ |
||
| 2984 | public function bitwise_leftRotate($shift) |
||
| 2985 | { |
||
| 2986 | $bits = $this->toBytes(); |
||
| 2987 | |||
| 2988 | if ($this->precision > 0) { |
||
| 2989 | $precision = $this->precision; |
||
| 2990 | if (MATH_BIGINTEGER_MODE == self::MODE_BCMATH) { |
||
| 2991 | $mask = $this->bitmask->subtract(new static(1)); |
||
| 2992 | $mask = $mask->toBytes(); |
||
| 2993 | } else { |
||
| 2994 | $mask = $this->bitmask->toBytes(); |
||
| 2995 | } |
||
| 2996 | } else { |
||
| 2997 | $temp = ord($bits[0]); |
||
| 2998 | for ($i = 0; $temp >> $i; ++$i) { |
||
| 2999 | } |
||
| 3000 | $precision = 8 * strlen($bits) - 8 + $i; |
||
| 3001 | $mask = chr((1 << ($precision & 0x7)) - 1) . str_repeat(chr(0xFF), $precision >> 3); |
||
| 3002 | } |
||
| 3003 | |||
| 3004 | if ($shift < 0) { |
||
| 3005 | $shift+= $precision; |
||
| 3006 | } |
||
| 3007 | $shift%= $precision; |
||
| 3008 | |||
| 3009 | if (!$shift) { |
||
| 3010 | return $this->copy(); |
||
| 3011 | } |
||
| 3012 | |||
| 3013 | $left = $this->bitwise_leftShift($shift); |
||
| 3014 | $left = $left->bitwise_and(new static($mask, 256)); |
||
| 3015 | $right = $this->bitwise_rightShift($precision - $shift); |
||
| 3016 | $result = MATH_BIGINTEGER_MODE != self::MODE_BCMATH ? $left->bitwise_or($right) : $left->add($right); |
||
| 3017 | return $this->_normalize($result); |
||
| 3018 | } |
||
| 3019 | |||
| 3020 | /** |
||
| 3021 | * Logical Right Rotate |
||
| 3022 | * |
||
| 3023 | * Instead of the bottom x bits being dropped they're prepended to the shifted bit string. |
||
| 3024 | * |
||
| 3025 | * @param int $shift |
||
| 3026 | * @return \phpseclib\Math\BigInteger |
||
| 3027 | * @access public |
||
| 3028 | */ |
||
| 3029 | public function bitwise_rightRotate($shift) |
||
| 3030 | { |
||
| 3031 | return $this->bitwise_leftRotate(-$shift); |
||
| 3032 | } |
||
| 3033 | |||
| 3034 | /** |
||
| 3035 | * Generates a random BigInteger |
||
| 3036 | * |
||
| 3037 | * Byte length is equal to $length. Uses \phpseclib\Crypt\Random if it's loaded and mt_rand if it's not. |
||
| 3038 | * |
||
| 3039 | * @param int $length |
||
| 3040 | * @return \phpseclib\Math\BigInteger |
||
| 3041 | * @access private |
||
| 3042 | */ |
||
| 3043 | public function _random_number_helper($size) |
||
| 3044 | { |
||
| 3045 | $random = Random::string($size); |
||
| 3046 | return new static($random, 256); |
||
| 3047 | } |
||
| 3048 | |||
| 3049 | /** |
||
| 3050 | * Generate a random number |
||
| 3051 | * |
||
| 3052 | * Returns a random number between $min and $max where $min and $max |
||
| 3053 | * can be defined using one of the two methods: |
||
| 3054 | * |
||
| 3055 | * $min->random($max) |
||
| 3056 | * $max->random($min) |
||
| 3057 | * |
||
| 3058 | * @param \phpseclib\Math\BigInteger $arg1 |
||
| 3059 | * @param \phpseclib\Math\BigInteger $arg2 |
||
| 3060 | * @return \phpseclib\Math\BigInteger |
||
| 3061 | * @access public |
||
| 3062 | * @internal The API for creating random numbers used to be $a->random($min, $max), where $a was a BigInteger object. |
||
| 3063 | * That method is still supported for BC purposes. |
||
| 3064 | */ |
||
| 3065 | public function random($arg1, $arg2 = false) |
||
| 3066 | { |
||
| 3067 | if ($arg1 === false) { |
||
| 3068 | return false; |
||
| 3069 | } |
||
| 3070 | |||
| 3071 | if ($arg2 === false) { |
||
| 3072 | $max = $arg1; |
||
| 3073 | $min = $this; |
||
| 3074 | } else { |
||
| 3075 | $min = $arg1; |
||
| 3076 | $max = $arg2; |
||
| 3077 | } |
||
| 3078 | |||
| 3079 | $compare = $max->compare($min); |
||
| 3080 | |||
| 3081 | if (!$compare) { |
||
| 3082 | return $this->_normalize($min); |
||
| 3083 | } elseif ($compare < 0) { |
||
| 3084 | // if $min is bigger then $max, swap $min and $max |
||
| 3085 | $temp = $max; |
||
| 3086 | $max = $min; |
||
| 3087 | $min = $temp; |
||
| 3088 | } |
||
| 3089 | |||
| 3090 | static $one; |
||
| 3091 | if (!isset($one)) { |
||
| 3092 | $one = new static(1); |
||
| 3093 | } |
||
| 3094 | |||
| 3095 | $max = $max->subtract($min->subtract($one)); |
||
| 3096 | $size = strlen(ltrim($max->toBytes(), chr(0))); |
||
| 3097 | |||
| 3098 | /* |
||
| 3099 | doing $random % $max doesn't work because some numbers will be more likely to occur than others. |
||
| 3100 | eg. if $max is 140 and $random's max is 255 then that'd mean both $random = 5 and $random = 145 |
||
| 3101 | would produce 5 whereas the only value of random that could produce 139 would be 139. ie. |
||
| 3102 | not all numbers would be equally likely. some would be more likely than others. |
||
| 3103 | |||
| 3104 | creating a whole new random number until you find one that is within the range doesn't work |
||
| 3105 | because, for sufficiently small ranges, the likelihood that you'd get a number within that range |
||
| 3106 | would be pretty small. eg. with $random's max being 255 and if your $max being 1 the probability |
||
| 3107 | would be pretty high that $random would be greater than $max. |
||
| 3108 | |||
| 3109 | phpseclib works around this using the technique described here: |
||
| 3110 | |||
| 3111 | http://crypto.stackexchange.com/questions/5708/creating-a-small-number-from-a-cryptographically-secure-random-string |
||
| 3112 | */ |
||
| 3113 | $random_max = new static(chr(1) . str_repeat("\0", $size), 256); |
||
| 3114 | $random = $this->_random_number_helper($size); |
||
| 3115 | |||
| 3116 | list($max_multiple) = $random_max->divide($max); |
||
| 3117 | $max_multiple = $max_multiple->multiply($max); |
||
| 3118 | |||
| 3119 | while ($random->compare($max_multiple) >= 0) { |
||
| 3120 | $random = $random->subtract($max_multiple); |
||
| 3121 | $random_max = $random_max->subtract($max_multiple); |
||
| 3122 | $random = $random->bitwise_leftShift(8); |
||
| 3123 | $random = $random->add($this->_random_number_helper(1)); |
||
| 3124 | $random_max = $random_max->bitwise_leftShift(8); |
||
| 3125 | list($max_multiple) = $random_max->divide($max); |
||
| 3126 | $max_multiple = $max_multiple->multiply($max); |
||
| 3127 | } |
||
| 3128 | list(, $random) = $random->divide($max); |
||
| 3129 | |||
| 3130 | return $this->_normalize($random->add($min)); |
||
| 3131 | } |
||
| 3132 | |||
| 3133 | /** |
||
| 3134 | * Generate a random prime number. |
||
| 3135 | * |
||
| 3136 | * If there's not a prime within the given range, false will be returned. |
||
| 3137 | * If more than $timeout seconds have elapsed, give up and return false. |
||
| 3138 | * |
||
| 3139 | * @param \phpseclib\Math\BigInteger $arg1 |
||
| 3140 | * @param \phpseclib\Math\BigInteger $arg2 |
||
| 3141 | * @param int $timeout |
||
| 3142 | * @return Math_BigInteger|false |
||
| 3143 | * @access public |
||
| 3144 | * @internal See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap4.pdf#page=15 HAC 4.44}. |
||
| 3145 | */ |
||
| 3146 | public function randomPrime($arg1, $arg2 = false, $timeout = false) |
||
| 3147 | { |
||
| 3148 | if ($arg1 === false) { |
||
| 3149 | return false; |
||
| 3150 | } |
||
| 3151 | |||
| 3152 | if ($arg2 === false) { |
||
| 3153 | $max = $arg1; |
||
| 3154 | $min = $this; |
||
| 3155 | } else { |
||
| 3156 | $min = $arg1; |
||
| 3157 | $max = $arg2; |
||
| 3158 | } |
||
| 3159 | |||
| 3160 | $compare = $max->compare($min); |
||
| 3161 | |||
| 3162 | if (!$compare) { |
||
| 3163 | return $min->isPrime() ? $min : false; |
||
| 3164 | } elseif ($compare < 0) { |
||
| 3165 | // if $min is bigger then $max, swap $min and $max |
||
| 3166 | $temp = $max; |
||
| 3167 | $max = $min; |
||
| 3168 | $min = $temp; |
||
| 3169 | } |
||
| 3170 | |||
| 3171 | static $one, $two; |
||
| 3172 | if (!isset($one)) { |
||
| 3173 | $one = new static(1); |
||
| 3174 | $two = new static(2); |
||
| 3175 | } |
||
| 3176 | |||
| 3177 | $start = time(); |
||
| 3178 | |||
| 3179 | $x = $this->random($min, $max); |
||
| 3180 | |||
| 3181 | // gmp_nextprime() requires PHP 5 >= 5.2.0 per <http://php.net/gmp-nextprime>. |
||
| 3182 | if (MATH_BIGINTEGER_MODE == self::MODE_GMP && extension_loaded('gmp')) { |
||
| 3183 | $p = new static(); |
||
| 3184 | $p->value = gmp_nextprime($x->value); |
||
| 3185 | |||
| 3186 | if ($p->compare($max) <= 0) { |
||
| 3187 | return $p; |
||
| 3188 | } |
||
| 3189 | |||
| 3190 | if (!$min->equals($x)) { |
||
| 3191 | $x = $x->subtract($one); |
||
| 3192 | } |
||
| 3193 | |||
| 3194 | return $x->randomPrime($min, $x); |
||
| 3195 | } |
||
| 3196 | |||
| 3197 | if ($x->equals($two)) { |
||
| 3198 | return $x; |
||
| 3199 | } |
||
| 3200 | |||
| 3201 | $x->_make_odd(); |
||
| 3202 | if ($x->compare($max) > 0) { |
||
| 3203 | // if $x > $max then $max is even and if $min == $max then no prime number exists between the specified range |
||
| 3204 | if ($min->equals($max)) { |
||
| 3205 | return false; |
||
| 3206 | } |
||
| 3207 | $x = $min->copy(); |
||
| 3208 | $x->_make_odd(); |
||
| 3209 | } |
||
| 3210 | |||
| 3211 | $initial_x = $x->copy(); |
||
| 3212 | |||
| 3213 | while (true) { |
||
| 3214 | if ($timeout !== false && time() - $start > $timeout) { |
||
| 3215 | return false; |
||
| 3216 | } |
||
| 3217 | |||
| 3218 | if ($x->isPrime()) { |
||
| 3219 | return $x; |
||
| 3220 | } |
||
| 3221 | |||
| 3222 | $x = $x->add($two); |
||
| 3223 | |||
| 3224 | if ($x->compare($max) > 0) { |
||
| 3225 | $x = $min->copy(); |
||
| 3226 | if ($x->equals($two)) { |
||
| 3227 | return $x; |
||
| 3228 | } |
||
| 3229 | $x->_make_odd(); |
||
| 3230 | } |
||
| 3231 | |||
| 3232 | if ($x->equals($initial_x)) { |
||
| 3233 | return false; |
||
| 3234 | } |
||
| 3235 | } |
||
| 3236 | } |
||
| 3237 | |||
| 3238 | /** |
||
| 3239 | * Make the current number odd |
||
| 3240 | * |
||
| 3241 | * If the current number is odd it'll be unchanged. If it's even, one will be added to it. |
||
| 3242 | * |
||
| 3243 | * @see self::randomPrime() |
||
| 3244 | * @access private |
||
| 3245 | */ |
||
| 3246 | public function _make_odd() |
||
| 3247 | { |
||
| 3248 | switch (MATH_BIGINTEGER_MODE) { |
||
| 3249 | case self::MODE_GMP: |
||
| 3250 | gmp_setbit($this->value, 0); |
||
| 3251 | break; |
||
| 3252 | case self::MODE_BCMATH: |
||
| 3253 | if ($this->value[strlen($this->value) - 1] % 2 == 0) { |
||
| 3254 | $this->value = bcadd($this->value, '1'); |
||
| 3255 | } |
||
| 3256 | break; |
||
| 3257 | default: |
||
| 3258 | $this->value[0] |= 1; |
||
| 3259 | } |
||
| 3260 | } |
||
| 3261 | |||
| 3262 | /** |
||
| 3263 | * Checks a numer to see if it's prime |
||
| 3264 | * |
||
| 3265 | * Assuming the $t parameter is not set, this function has an error rate of 2**-80. The main motivation for the |
||
| 3266 | * $t parameter is distributability. BigInteger::randomPrime() can be distributed across multiple pageloads |
||
| 3267 | * on a website instead of just one. |
||
| 3268 | * |
||
| 3269 | * @param \phpseclib\Math\BigInteger $t |
||
| 3270 | * @return bool |
||
| 3271 | * @access public |
||
| 3272 | * @internal Uses the |
||
| 3273 | * {@link http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test Miller-Rabin primality test}. See |
||
| 3274 | * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap4.pdf#page=8 HAC 4.24}. |
||
| 3275 | */ |
||
| 3276 | public function isPrime($t = false) |
||
| 3277 | { |
||
| 3278 | $length = strlen($this->toBytes()); |
||
| 3279 | |||
| 3280 | if (!$t) { |
||
| 3281 | // see HAC 4.49 "Note (controlling the error probability)" |
||
| 3282 | // @codingStandardsIgnoreStart |
||
| 3283 | if ($length >= 163) { |
||
| 3284 | $t = 2; |
||
| 3285 | } // floor(1300 / 8) |
||
| 3286 | elseif ($length >= 106) { |
||
| 3287 | $t = 3; |
||
| 3288 | } // floor( 850 / 8) |
||
| 3289 | elseif ($length >= 81) { |
||
| 3290 | $t = 4; |
||
| 3291 | } // floor( 650 / 8) |
||
| 3292 | elseif ($length >= 68) { |
||
| 3293 | $t = 5; |
||
| 3294 | } // floor( 550 / 8) |
||
| 3295 | elseif ($length >= 56) { |
||
| 3296 | $t = 6; |
||
| 3297 | } // floor( 450 / 8) |
||
| 3298 | elseif ($length >= 50) { |
||
| 3299 | $t = 7; |
||
| 3300 | } // floor( 400 / 8) |
||
| 3301 | elseif ($length >= 43) { |
||
| 3302 | $t = 8; |
||
| 3303 | } // floor( 350 / 8) |
||
| 3304 | elseif ($length >= 37) { |
||
| 3305 | $t = 9; |
||
| 3306 | } // floor( 300 / 8) |
||
| 3307 | elseif ($length >= 31) { |
||
| 3308 | $t = 12; |
||
| 3309 | } // floor( 250 / 8) |
||
| 3310 | elseif ($length >= 25) { |
||
| 3311 | $t = 15; |
||
| 3312 | } // floor( 200 / 8) |
||
| 3313 | elseif ($length >= 18) { |
||
| 3314 | $t = 18; |
||
| 3315 | } // floor( 150 / 8) |
||
| 3316 | else { |
||
| 3317 | $t = 27; |
||
| 3318 | } |
||
| 3319 | // @codingStandardsIgnoreEnd |
||
| 3320 | } |
||
| 3321 | |||
| 3322 | // ie. gmp_testbit($this, 0) |
||
| 3323 | // ie. isEven() or !isOdd() |
||
| 3324 | switch (MATH_BIGINTEGER_MODE) { |
||
| 3325 | case self::MODE_GMP: |
||
| 3326 | return gmp_prob_prime($this->value, $t) != 0; |
||
| 3327 | case self::MODE_BCMATH: |
||
| 3328 | if ($this->value === '2') { |
||
| 3329 | return true; |
||
| 3330 | } |
||
| 3331 | if ($this->value[strlen($this->value) - 1] % 2 == 0) { |
||
| 3332 | return false; |
||
| 3333 | } |
||
| 3334 | break; |
||
| 3335 | default: |
||
| 3336 | if ($this->value == array(2)) { |
||
| 3337 | return true; |
||
| 3338 | } |
||
| 3339 | if (~$this->value[0] & 1) { |
||
| 3340 | return false; |
||
| 3341 | } |
||
| 3342 | } |
||
| 3343 | |||
| 3344 | static $primes, $zero, $one, $two; |
||
| 3345 | |||
| 3346 | if (!isset($primes)) { |
||
| 3347 | $primes = array( |
||
| 3348 | 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, |
||
| 3349 | 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, |
||
| 3350 | 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, |
||
| 3351 | 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, |
||
| 3352 | 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, |
||
| 3353 | 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, |
||
| 3354 | 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, |
||
| 3355 | 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, |
||
| 3356 | 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, |
||
| 3357 | 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, |
||
| 3358 | 953, 967, 971, 977, 983, 991, 997 |
||
| 3359 | ); |
||
| 3360 | |||
| 3361 | if (MATH_BIGINTEGER_MODE != self::MODE_INTERNAL) { |
||
| 3362 | for ($i = 0; $i < count($primes); ++$i) { |
||
| 3363 | $primes[$i] = new static($primes[$i]); |
||
| 3364 | } |
||
| 3365 | } |
||
| 3366 | |||
| 3367 | $zero = new static(); |
||
| 3368 | $one = new static(1); |
||
| 3369 | $two = new static(2); |
||
| 3370 | } |
||
| 3371 | |||
| 3372 | if ($this->equals($one)) { |
||
| 3373 | return false; |
||
| 3374 | } |
||
| 3375 | |||
| 3376 | // see HAC 4.4.1 "Random search for probable primes" |
||
| 3377 | if (MATH_BIGINTEGER_MODE != self::MODE_INTERNAL) { |
||
| 3378 | foreach ($primes as $prime) { |
||
| 3379 | list(, $r) = $this->divide($prime); |
||
| 3380 | if ($r->equals($zero)) { |
||
| 3381 | return $this->equals($prime); |
||
| 3382 | } |
||
| 3383 | } |
||
| 3384 | } else { |
||
| 3385 | $value = $this->value; |
||
| 3386 | foreach ($primes as $prime) { |
||
| 3387 | list(, $r) = $this->_divide_digit($value, $prime); |
||
| 3388 | if (!$r) { |
||
| 3389 | return count($value) == 1 && $value[0] == $prime; |
||
| 3390 | } |
||
| 3391 | } |
||
| 3392 | } |
||
| 3393 | |||
| 3394 | $n = $this->copy(); |
||
| 3395 | $n_1 = $n->subtract($one); |
||
| 3396 | $n_2 = $n->subtract($two); |
||
| 3397 | |||
| 3398 | $r = $n_1->copy(); |
||
| 3399 | $r_value = $r->value; |
||
| 3400 | // ie. $s = gmp_scan1($n, 0) and $r = gmp_div_q($n, gmp_pow(gmp_init('2'), $s)); |
||
| 3401 | if (MATH_BIGINTEGER_MODE == self::MODE_BCMATH) { |
||
| 3402 | $s = 0; |
||
| 3403 | // if $n was 1, $r would be 0 and this would be an infinite loop, hence our $this->equals($one) check earlier |
||
| 3404 | while ($r->value[strlen($r->value) - 1] % 2 == 0) { |
||
| 3405 | $r->value = bcdiv($r->value, '2', 0); |
||
| 3406 | ++$s; |
||
| 3407 | } |
||
| 3408 | } else { |
||
| 3409 | for ($i = 0, $r_length = count($r_value); $i < $r_length; ++$i) { |
||
| 3410 | $temp = ~$r_value[$i] & 0xFFFFFF; |
||
| 3411 | for ($j = 1; ($temp >> $j) & 1; ++$j) { |
||
| 3412 | } |
||
| 3413 | if ($j != 25) { |
||
| 3414 | break; |
||
| 3415 | } |
||
| 3416 | } |
||
| 3417 | $s = 26 * $i + $j - 1; |
||
| 3418 | $r->_rshift($s); |
||
| 3419 | } |
||
| 3420 | |||
| 3421 | for ($i = 0; $i < $t; ++$i) { |
||
| 3422 | $a = $this->random($two, $n_2); |
||
| 3423 | $y = $a->modPow($r, $n); |
||
| 3424 | |||
| 3425 | if (!$y->equals($one) && !$y->equals($n_1)) { |
||
| 3426 | for ($j = 1; $j < $s && !$y->equals($n_1); ++$j) { |
||
| 3427 | $y = $y->modPow($two, $n); |
||
| 3428 | if ($y->equals($one)) { |
||
| 3429 | return false; |
||
| 3430 | } |
||
| 3431 | } |
||
| 3432 | |||
| 3433 | if (!$y->equals($n_1)) { |
||
| 3434 | return false; |
||
| 3435 | } |
||
| 3436 | } |
||
| 3437 | } |
||
| 3438 | return true; |
||
| 3439 | } |
||
| 3440 | |||
| 3441 | /** |
||
| 3442 | * Logical Left Shift |
||
| 3443 | * |
||
| 3444 | * Shifts BigInteger's by $shift bits. |
||
| 3445 | * |
||
| 3446 | * @param int $shift |
||
| 3447 | * @access private |
||
| 3448 | */ |
||
| 3449 | public function _lshift($shift) |
||
| 3450 | { |
||
| 3451 | if ($shift == 0) { |
||
| 3452 | return; |
||
| 3453 | } |
||
| 3454 | |||
| 3455 | $num_digits = (int) ($shift / self::$base); |
||
| 3456 | $shift %= self::$base; |
||
| 3457 | $shift = 1 << $shift; |
||
| 3458 | |||
| 3459 | $carry = 0; |
||
| 3460 | |||
| 3461 | for ($i = 0; $i < count($this->value); ++$i) { |
||
| 3462 | $temp = $this->value[$i] * $shift + $carry; |
||
| 3463 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 3464 | $this->value[$i] = (int) ($temp - $carry * self::$baseFull); |
||
| 3465 | } |
||
| 3466 | |||
| 3467 | if ($carry) { |
||
| 3468 | $this->value[count($this->value)] = $carry; |
||
| 3469 | } |
||
| 3470 | |||
| 3471 | while ($num_digits--) { |
||
| 3472 | array_unshift($this->value, 0); |
||
| 3473 | } |
||
| 3474 | } |
||
| 3475 | |||
| 3476 | /** |
||
| 3477 | * Logical Right Shift |
||
| 3478 | * |
||
| 3479 | * Shifts BigInteger's by $shift bits. |
||
| 3480 | * |
||
| 3481 | * @param int $shift |
||
| 3482 | * @access private |
||
| 3483 | */ |
||
| 3484 | public function _rshift($shift) |
||
| 3485 | { |
||
| 3486 | if ($shift == 0) { |
||
| 3487 | return; |
||
| 3488 | } |
||
| 3489 | |||
| 3490 | $num_digits = (int) ($shift / self::$base); |
||
| 3491 | $shift %= self::$base; |
||
| 3492 | $carry_shift = self::$base - $shift; |
||
| 3493 | $carry_mask = (1 << $shift) - 1; |
||
| 3494 | |||
| 3495 | if ($num_digits) { |
||
| 3496 | $this->value = array_slice($this->value, $num_digits); |
||
| 3497 | } |
||
| 3498 | |||
| 3499 | $carry = 0; |
||
| 3500 | |||
| 3501 | for ($i = count($this->value) - 1; $i >= 0; --$i) { |
||
| 3502 | $temp = $this->value[$i] >> $shift | $carry; |
||
| 3503 | $carry = ($this->value[$i] & $carry_mask) << $carry_shift; |
||
| 3504 | $this->value[$i] = $temp; |
||
| 3505 | } |
||
| 3506 | |||
| 3507 | $this->value = $this->_trim($this->value); |
||
| 3508 | } |
||
| 3509 | |||
| 3510 | /** |
||
| 3511 | * Normalize |
||
| 3512 | * |
||
| 3513 | * Removes leading zeros and truncates (if necessary) to maintain the appropriate precision |
||
| 3514 | * |
||
| 3515 | * @param \phpseclib\Math\BigInteger |
||
| 3516 | * @return \phpseclib\Math\BigInteger |
||
| 3517 | * @see self::_trim() |
||
| 3518 | * @access private |
||
| 3519 | */ |
||
| 3520 | public function _normalize($result) |
||
| 3521 | { |
||
| 3522 | $result->precision = $this->precision; |
||
| 3523 | $result->bitmask = $this->bitmask; |
||
| 3524 | |||
| 3525 | switch (MATH_BIGINTEGER_MODE) { |
||
| 3526 | case self::MODE_GMP: |
||
| 3527 | if ($this->bitmask !== false) { |
||
| 3528 | $result->value = gmp_and($result->value, $result->bitmask->value); |
||
| 3529 | } |
||
| 3530 | |||
| 3531 | return $result; |
||
| 3532 | case self::MODE_BCMATH: |
||
| 3533 | if (!empty($result->bitmask->value)) { |
||
| 3534 | $result->value = bcmod($result->value, $result->bitmask->value); |
||
| 3535 | } |
||
| 3536 | |||
| 3537 | return $result; |
||
| 3538 | } |
||
| 3539 | |||
| 3540 | $value = &$result->value; |
||
| 3541 | |||
| 3542 | if (!count($value)) { |
||
| 3543 | return $result; |
||
| 3544 | } |
||
| 3545 | |||
| 3546 | $value = $this->_trim($value); |
||
| 3547 | |||
| 3548 | if (!empty($result->bitmask->value)) { |
||
| 3549 | $length = min(count($value), count($this->bitmask->value)); |
||
| 3550 | $value = array_slice($value, 0, $length); |
||
| 3551 | |||
| 3552 | for ($i = 0; $i < $length; ++$i) { |
||
| 3553 | $value[$i] = $value[$i] & $this->bitmask->value[$i]; |
||
| 3554 | } |
||
| 3555 | } |
||
| 3556 | |||
| 3557 | return $result; |
||
| 3558 | } |
||
| 3559 | |||
| 3560 | /** |
||
| 3561 | * Trim |
||
| 3562 | * |
||
| 3563 | * Removes leading zeros |
||
| 3564 | * |
||
| 3565 | * @param array $value |
||
| 3566 | * @return \phpseclib\Math\BigInteger |
||
| 3567 | * @access private |
||
| 3568 | */ |
||
| 3569 | public function _trim($value) |
||
| 3570 | { |
||
| 3571 | for ($i = count($value) - 1; $i >= 0; --$i) { |
||
| 3572 | if ($value[$i]) { |
||
| 3573 | break; |
||
| 3574 | } |
||
| 3575 | unset($value[$i]); |
||
| 3576 | } |
||
| 3577 | |||
| 3578 | return $value; |
||
| 3579 | } |
||
| 3580 | |||
| 3581 | /** |
||
| 3582 | * Array Repeat |
||
| 3583 | * |
||
| 3584 | * @param $input Array |
||
| 3585 | * @param $multiplier mixed |
||
| 3586 | * @return array |
||
| 3587 | * @access private |
||
| 3588 | */ |
||
| 3589 | public function _array_repeat($input, $multiplier) |
||
| 3590 | { |
||
| 3591 | return ($multiplier) ? array_fill(0, $multiplier, $input) : array(); |
||
| 3592 | } |
||
| 3593 | |||
| 3594 | /** |
||
| 3595 | * Logical Left Shift |
||
| 3596 | * |
||
| 3597 | * Shifts binary strings $shift bits, essentially multiplying by 2**$shift. |
||
| 3598 | * |
||
| 3599 | * @param $x String |
||
| 3600 | * @param $shift Integer |
||
| 3601 | * @return string |
||
| 3602 | * @access private |
||
| 3603 | */ |
||
| 3604 | public function _base256_lshift(&$x, $shift) |
||
| 3605 | { |
||
| 3606 | if ($shift == 0) { |
||
| 3607 | return; |
||
| 3608 | } |
||
| 3609 | |||
| 3610 | $num_bytes = $shift >> 3; // eg. floor($shift/8) |
||
| 3611 | $shift &= 7; // eg. $shift % 8 |
||
| 3612 | |||
| 3613 | $carry = 0; |
||
| 3614 | for ($i = strlen($x) - 1; $i >= 0; --$i) { |
||
| 3615 | $temp = ord($x[$i]) << $shift | $carry; |
||
| 3616 | $x[$i] = chr($temp); |
||
| 3617 | $carry = $temp >> 8; |
||
| 3618 | } |
||
| 3619 | $carry = ($carry != 0) ? chr($carry) : ''; |
||
| 3620 | $x = $carry . $x . str_repeat(chr(0), $num_bytes); |
||
| 3621 | } |
||
| 3622 | |||
| 3623 | /** |
||
| 3624 | * Logical Right Shift |
||
| 3625 | * |
||
| 3626 | * Shifts binary strings $shift bits, essentially dividing by 2**$shift and returning the remainder. |
||
| 3627 | * |
||
| 3628 | * @param $x String |
||
| 3629 | * @param $shift Integer |
||
| 3630 | * @return string |
||
| 3631 | * @access private |
||
| 3632 | */ |
||
| 3633 | public function _base256_rshift(&$x, $shift) |
||
| 3634 | { |
||
| 3635 | if ($shift == 0) { |
||
| 3636 | $x = ltrim($x, chr(0)); |
||
| 3637 | return ''; |
||
| 3638 | } |
||
| 3639 | |||
| 3640 | $num_bytes = $shift >> 3; // eg. floor($shift/8) |
||
| 3641 | $shift &= 7; // eg. $shift % 8 |
||
| 3642 | |||
| 3643 | $remainder = ''; |
||
| 3644 | if ($num_bytes) { |
||
| 3645 | $start = $num_bytes > strlen($x) ? -strlen($x) : -$num_bytes; |
||
| 3646 | $remainder = substr($x, $start); |
||
| 3647 | $x = substr($x, 0, -$num_bytes); |
||
| 3648 | } |
||
| 3649 | |||
| 3650 | $carry = 0; |
||
| 3651 | $carry_shift = 8 - $shift; |
||
| 3652 | for ($i = 0; $i < strlen($x); ++$i) { |
||
| 3653 | $temp = (ord($x[$i]) >> $shift) | $carry; |
||
| 3654 | $carry = (ord($x[$i]) << $carry_shift) & 0xFF; |
||
| 3655 | $x[$i] = chr($temp); |
||
| 3656 | } |
||
| 3657 | $x = ltrim($x, chr(0)); |
||
| 3658 | |||
| 3659 | $remainder = chr($carry >> $carry_shift) . $remainder; |
||
| 3660 | |||
| 3661 | return ltrim($remainder, chr(0)); |
||
| 3662 | } |
||
| 3663 | |||
| 3664 | // one quirk about how the following functions are implemented is that PHP defines N to be an unsigned long |
||
| 3665 | // at 32-bits, while java's longs are 64-bits. |
||
| 3666 | |||
| 3667 | /** |
||
| 3668 | * Converts 32-bit integers to bytes. |
||
| 3669 | * |
||
| 3670 | * @param int $x |
||
| 3671 | * @return string |
||
| 3672 | * @access private |
||
| 3673 | */ |
||
| 3674 | public function _int2bytes($x) |
||
| 3675 | { |
||
| 3676 | return ltrim(pack('N', $x), chr(0)); |
||
| 3677 | } |
||
| 3678 | |||
| 3679 | /** |
||
| 3680 | * Converts bytes to 32-bit integers |
||
| 3681 | * |
||
| 3682 | * @param string $x |
||
| 3683 | * @return int |
||
| 3684 | * @access private |
||
| 3685 | */ |
||
| 3686 | public function _bytes2int($x) |
||
| 3687 | { |
||
| 3688 | $temp = unpack('Nint', str_pad($x, 4, chr(0), STR_PAD_LEFT)); |
||
| 3689 | return $temp['int']; |
||
| 3690 | } |
||
| 3691 | |||
| 3692 | /** |
||
| 3693 | * DER-encode an integer |
||
| 3694 | * |
||
| 3695 | * The ability to DER-encode integers is needed to create RSA public keys for use with OpenSSL |
||
| 3696 | * |
||
| 3697 | * @see self::modPow() |
||
| 3698 | * @access private |
||
| 3699 | * @param int $length |
||
| 3700 | * @return string |
||
| 3701 | */ |
||
| 3702 | public function _encodeASN1Length($length) |
||
| 3703 | { |
||
| 3704 | if ($length <= 0x7F) { |
||
| 3705 | return chr($length); |
||
| 3706 | } |
||
| 3707 | |||
| 3708 | $temp = ltrim(pack('N', $length), chr(0)); |
||
| 3709 | return pack('Ca*', 0x80 | strlen($temp), $temp); |
||
| 3710 | } |
||
| 3711 | |||
| 3712 | /** |
||
| 3713 | * Single digit division |
||
| 3714 | * |
||
| 3715 | * Even if int64 is being used the division operator will return a float64 value |
||
| 3716 | * if the dividend is not evenly divisible by the divisor. Since a float64 doesn't |
||
| 3717 | * have the precision of int64 this is a problem so, when int64 is being used, |
||
| 3718 | * we'll guarantee that the dividend is divisible by first subtracting the remainder. |
||
| 3719 | * |
||
| 3720 | * @access private |
||
| 3721 | * @param int $x |
||
| 3722 | * @param int $y |
||
| 3723 | * @return int |
||
| 3724 | */ |
||
| 3725 | public function _safe_divide($x, $y) |
||
| 3733 | } |
||
| 3734 | } |
||
| 3735 |