|
1
|
|
|
import numpy as np |
|
2
|
|
|
from functools import reduce |
|
3
|
|
|
import attr |
|
4
|
|
|
|
|
5
|
|
|
|
|
6
|
|
|
def _group_iterations(self): |
|
7
|
|
|
""" |
|
8
|
|
|
This [0, 0, 0, 0, 1, 1, 0.8, 0.6, 0.4, 0.2, 0.2, 0.1] leads to this [4, 2, 1, 1, 1, 2, 1].\n |
|
9
|
|
|
:return: steady_chunks of fit calls that have to be made to satisfy the dynamic change of the parameter value |
|
10
|
|
|
:rtype: list |
|
11
|
|
|
""" |
|
12
|
|
|
iters = [] |
|
13
|
|
|
pv = self._values[0] |
|
14
|
|
|
to_put = 1 |
|
15
|
|
|
for cv in self._values[1:]: |
|
16
|
|
|
if cv == pv: |
|
17
|
|
|
to_put += 1 |
|
18
|
|
|
else: |
|
19
|
|
|
iters.append(to_put) |
|
20
|
|
|
to_put = 1 |
|
21
|
|
|
pv = cv |
|
22
|
|
|
iters.append(to_put) |
|
23
|
|
|
return iters |
|
24
|
|
|
|
|
25
|
|
|
|
|
26
|
|
|
def _steady_iteration_ranges(iterations_groups): |
|
27
|
|
|
""" |
|
28
|
|
|
This [5, 2, 1, 1, 1, 1] leads to this [[1,5], [6,7]]\n |
|
29
|
|
|
This [5, 2, 1, 1, 4, 1] leads to this [[1,5], [6,7], [10,13]].\n |
|
30
|
|
|
:param list iterations_groups: |
|
31
|
|
|
:return: |
|
32
|
|
|
:rtype: list indeces start from 1 (not 0) ! |
|
33
|
|
|
""" |
|
34
|
|
|
res = [] |
|
35
|
|
|
accumulated_iters = 1 |
|
36
|
|
|
for iter_chunk in iterations_groups: |
|
37
|
|
|
left_iter_count = accumulated_iters |
|
38
|
|
|
if iter_chunk > 1: |
|
39
|
|
|
right_iter_count = left_iter_count + iter_chunk - 1 |
|
40
|
|
|
res.append([left_iter_count, right_iter_count]) |
|
41
|
|
|
accumulated_iters += iter_chunk |
|
42
|
|
|
else: |
|
43
|
|
|
accumulated_iters += 1 |
|
44
|
|
|
return res |
|
45
|
|
|
|
|
46
|
|
|
|
|
47
|
|
|
@attr.s |
|
48
|
|
|
class ParameterTrajectory(object): |
|
49
|
|
|
""" |
|
50
|
|
|
This class encapsulates a parameter's value trajectory. This is basically the value the parameter shall have in |
|
51
|
|
|
every consecutive train iteration (pass through the whole collection.\n |
|
52
|
|
|
For example we may want to deactivate a regularizer for the first 5 iterations and then activating it while downgrading |
|
53
|
|
|
its coefficient from 1 to 0.2 over another 4 iterations. Then we need the tau value to follow trajectory:\n |
|
54
|
|
|
[0, 0, 0, 0, 0, 1, 0.8, 0.6, 0.4, 0.2]. \nThis class encapsulates this bevaviour. |
|
55
|
|
|
""" |
|
56
|
|
|
_param = attr.ib(init=True, converter=str, repr=True) |
|
57
|
|
|
_values = attr.ib(init=True, converter=list, repr=True) |
|
58
|
|
|
group_iterations = attr.ib(init=True, default=attr.Factory(lambda self: _group_iterations(self), takes_self=True), repr=True) |
|
59
|
|
|
steady_chunks = attr.ib(init=False, default=attr.Factory(lambda self: IterationChunks([IterDuo(x) for x in _steady_iteration_ranges(self.group_iterations)]), takes_self=True)) |
|
60
|
|
|
|
|
61
|
|
|
def __getattr__(self, item): |
|
62
|
|
|
if item == self._param: |
|
63
|
|
|
return self._values |
|
64
|
|
|
elif item == 'last_' + self._param: |
|
65
|
|
|
return self._values[-1] |
|
66
|
|
|
|
|
67
|
|
|
def __len__(self): |
|
68
|
|
|
return len(self._values) |
|
69
|
|
|
|
|
70
|
|
|
def __str__(self): |
|
71
|
|
|
return str(self._values) |
|
72
|
|
|
|
|
73
|
|
|
def __getitem__(self, item): |
|
74
|
|
|
return self._values[item] |
|
75
|
|
|
|
|
76
|
|
|
def __iter__(self): |
|
77
|
|
|
for v in self._values: |
|
78
|
|
|
yield v |
|
79
|
|
|
|
|
80
|
|
|
|
|
81
|
|
|
class IterationChunks(object): |
|
82
|
|
|
def __init__(self, chunks_ref_list): |
|
83
|
|
|
if chunks_ref_list and (type(chunks_ref_list[0]) == list or chunks_ref_list[0] == 1): |
|
84
|
|
|
self.chunks = [IterSingle() if x == 1 else IterDuo(x) for x in chunks_ref_list] |
|
85
|
|
|
else: |
|
86
|
|
|
self.chunks = chunks_ref_list |
|
87
|
|
|
self._res = [] |
|
88
|
|
|
self._ref = [] |
|
89
|
|
|
self._toput_left = 0 |
|
90
|
|
|
self._cond = None |
|
91
|
|
|
self._done = False |
|
92
|
|
|
|
|
93
|
|
|
def to_training_chunks(self, collection_passes): |
|
94
|
|
|
if not self.chunks: |
|
95
|
|
|
return IterationChunks([IterSingle() for _ in range(collection_passes)]) |
|
96
|
|
|
covered = 0 |
|
97
|
|
|
res = [] |
|
98
|
|
|
for ind, ch in enumerate(self.chunks): |
|
99
|
|
|
to_add = [IterSingle() for _ in range(ch.left-covered-1)] |
|
100
|
|
|
res.extend(to_add) |
|
101
|
|
|
res.append(ch) |
|
102
|
|
|
covered = ch.right |
|
103
|
|
|
to_add = [IterSingle() for _ in range(collection_passes-covered)] |
|
104
|
|
|
res.extend(to_add) |
|
105
|
|
|
covered += len(to_add) |
|
106
|
|
|
assert covered == collection_passes |
|
107
|
|
|
return IterationChunks(res) |
|
108
|
|
|
|
|
109
|
|
|
def __str__(self): |
|
110
|
|
|
return '[{}]'.format(', '.join((str(_) for _ in self.chunks))) |
|
|
|
|
|
|
111
|
|
|
# return '[{}]'.format(', '.join(map(lambda x: '[{},{}]'.format(x.left, x.right), self.chunks))) |
|
112
|
|
|
|
|
113
|
|
|
def __len__(self): |
|
114
|
|
|
return len(self.chunks) |
|
115
|
|
|
|
|
116
|
|
|
def __getitem__(self, item): |
|
117
|
|
|
return self.chunks[item] |
|
118
|
|
|
|
|
119
|
|
|
def __iter__(self): |
|
120
|
|
|
for v in self.chunks: |
|
121
|
|
|
yield v |
|
122
|
|
|
|
|
123
|
|
|
def __eq__(self, other): |
|
124
|
|
|
if len(other) != len(self.chunks): |
|
125
|
|
|
return False |
|
126
|
|
|
for ext_el, self_el in zip(other, self.chunks): |
|
127
|
|
|
if ext_el != self_el: |
|
128
|
|
|
return False |
|
129
|
|
|
return True |
|
130
|
|
|
|
|
131
|
|
|
def __ne__(self, other): |
|
132
|
|
|
return not self.__eq__(other) |
|
133
|
|
|
|
|
134
|
|
|
def _overlap(self, duo, duo_list): |
|
135
|
|
|
self._res = [] |
|
136
|
|
|
self._ref = duo |
|
137
|
|
|
self._done = False |
|
138
|
|
|
ind = 0 |
|
139
|
|
|
ll = [_f for _f in [x if x.right > self._ref.left else None for x in duo_list] if _f] |
|
140
|
|
|
while not self._done and ind < len(ll): |
|
141
|
|
|
cand = ll[ind] |
|
142
|
|
|
if self._cand_left_smaller_than_ref_left(cand) and self._cond(cand) or self._cand_left_equal_to_ref_left(cand): |
|
143
|
|
|
self._insert_iterations(cand) |
|
144
|
|
|
elif self._cand_left_bigger_than_ref_left(cand): |
|
145
|
|
|
if self._cond(cand): |
|
146
|
|
|
self._insert_iterations(cand) |
|
147
|
|
|
else: |
|
148
|
|
|
self._done = True |
|
149
|
|
|
else: |
|
150
|
|
|
raise NoneConditionSatisfiedException("Candidate/external tuple {} to consider against the 'ref' tuple {}, was not found to be neither small, nor equal, nor bigger than 'ref'".format(cand, self._ref)) |
|
151
|
|
|
ind += 1 |
|
152
|
|
|
return self._res |
|
153
|
|
|
|
|
154
|
|
|
def _check_end(self, cand): |
|
155
|
|
|
if cand.left == self._ref.right - 1: |
|
156
|
|
|
self._done = True |
|
157
|
|
|
|
|
158
|
|
|
def _cand_left_smaller_than_ref_left(self, cand): |
|
159
|
|
|
self._cond = lambda x: self._ref.left < x.right # since cand.left < ref_left then if also ref.left < cand.right then there is overlap |
|
160
|
|
|
self._toput_left = self._ref.left |
|
161
|
|
|
return cand.left < self._ref.left |
|
162
|
|
|
|
|
163
|
|
|
def _cand_left_equal_to_ref_left(self, cand): # since ref.left = cand.left, there is overlap by default. no need for secondary condition |
|
164
|
|
|
self._toput_left = self._ref.left |
|
165
|
|
|
return cand.left == self._ref.left |
|
166
|
|
|
|
|
167
|
|
|
def _cand_left_bigger_than_ref_left(self, cand): |
|
168
|
|
|
self._cond = lambda x: x.left < self._ref.right # since ref_left < cand.left then if also can.left < ref.right then there is overlap |
|
169
|
|
|
self._toput_left = cand.left |
|
170
|
|
|
return self._ref.left < cand.left |
|
171
|
|
|
|
|
172
|
|
|
def _insert_iterations(self, cand): |
|
173
|
|
|
if self._ref.right < cand.right: |
|
174
|
|
|
self._res.append([self._toput_left, self._ref.right]) |
|
175
|
|
|
else: |
|
176
|
|
|
self._res.append([self._toput_left, cand.right]) |
|
177
|
|
|
self._check_end(cand) |
|
178
|
|
|
|
|
179
|
|
|
def common_chunks(self, chunks): |
|
180
|
|
|
""" |
|
181
|
|
|
:param IterationChunks chunks: |
|
182
|
|
|
:return: |
|
183
|
|
|
:rtype: IterationChunks |
|
184
|
|
|
""" |
|
185
|
|
|
return IterationChunks([IterDuo(item) for sublist in map(lambda x: self._overlap(x, chunks), self.chunks) for item in sublist]) |
|
186
|
|
|
|
|
187
|
|
|
class NoneConditionSatisfiedException(Exception): pass |
|
188
|
|
|
|
|
189
|
|
|
|
|
190
|
|
|
class IterChunk(object): |
|
191
|
|
|
def __init__(self, data): |
|
192
|
|
|
self._data = data |
|
193
|
|
|
|
|
194
|
|
|
@property |
|
195
|
|
|
def left(self): |
|
196
|
|
|
return self._data[0] |
|
197
|
|
|
@property |
|
198
|
|
|
def right(self): |
|
199
|
|
|
return self._data[1] |
|
200
|
|
|
@property |
|
201
|
|
|
def span(self): |
|
202
|
|
|
return self._data[1] - self._data[0] + 1 |
|
203
|
|
|
|
|
204
|
|
|
def __str__(self): |
|
205
|
|
|
return str(self._data) |
|
206
|
|
|
|
|
207
|
|
|
def __eq__(self, other): |
|
208
|
|
|
if self._data == other: |
|
209
|
|
|
return True |
|
210
|
|
|
return False |
|
211
|
|
|
|
|
212
|
|
|
def __ne__(self, other): |
|
213
|
|
|
return not self.__eq__(other) |
|
214
|
|
|
|
|
215
|
|
|
|
|
216
|
|
|
class IterDuo(IterChunk): |
|
217
|
|
|
def __init__(self, iters_tuple): |
|
218
|
|
|
super(IterDuo, self).__init__(iters_tuple) |
|
219
|
|
|
assert len(self._data) == 2 |
|
220
|
|
|
assert self._data[0] < self._data[1] |
|
221
|
|
|
assert type(self._data[0]) == type(self._data[1]) == int |
|
222
|
|
|
|
|
223
|
|
|
def __str__(self): |
|
224
|
|
|
return '[{}, {}]'.format(self._data[0], self._data[1]) |
|
225
|
|
|
|
|
226
|
|
|
class IterSingle(IterChunk): |
|
227
|
|
|
def __init__(self): |
|
228
|
|
|
super(IterSingle, self).__init__(1) |
|
229
|
|
|
@property |
|
230
|
|
|
def left(self): |
|
231
|
|
|
return self._data |
|
232
|
|
|
@property |
|
233
|
|
|
def right(self): |
|
234
|
|
|
return self._data |
|
235
|
|
|
@property |
|
236
|
|
|
def span(self): |
|
237
|
|
|
return self._data |
|
238
|
|
|
|
|
239
|
|
|
|
|
240
|
|
|
class TrajectoryBuilder(object): |
|
241
|
|
|
_interpolation_kind2interpolant = {'linear': {'preprocess': lambda x: (x[2], x[0], x[1]), |
|
242
|
|
|
'process': lambda x: list(np.interp(*x))}, |
|
243
|
|
|
'quadratic': {'preprocess': lambda x: (np.polyfit(x[0], x[1], 2), x[2]), |
|
244
|
|
|
'process': lambda x: np.polyval(*x)}, |
|
245
|
|
|
'cubic': {'preprocess': lambda x: (np.polyfit(x[0], x[1], 3), x[2]), |
|
246
|
|
|
'process': lambda x: np.polyval(*x)}} |
|
247
|
|
|
|
|
248
|
|
|
def __init__(self): |
|
249
|
|
|
self._values = [] |
|
250
|
|
|
self._name = '' |
|
251
|
|
|
self._interpolant = None |
|
252
|
|
|
|
|
253
|
|
|
@property |
|
254
|
|
|
def name(self): |
|
255
|
|
|
return self._name |
|
256
|
|
|
|
|
257
|
|
|
def steady_prev(self, iters): |
|
258
|
|
|
"""Use regularizer using the latest tau used and keeping it constant for 'iters' train cycles through the collection""" |
|
259
|
|
|
self._values.extend([self._values[-1]]*iters) |
|
260
|
|
|
return self |
|
261
|
|
|
|
|
262
|
|
|
def steady_new(self, iters, value): |
|
263
|
|
|
"""Use regularizer with a constant tau for 'iters' train cycles through the collection""" |
|
264
|
|
|
self._values.extend([value]*iters) |
|
265
|
|
|
return self |
|
266
|
|
|
|
|
267
|
|
|
def deactivate(self, iters): |
|
268
|
|
|
"""Keep regularizer inactive for 'iters' train cycles through the collection""" |
|
269
|
|
|
self._values.extend([0]*iters) |
|
270
|
|
|
return self |
|
271
|
|
|
|
|
272
|
|
|
def interpolate_to(self, iters, value, interpolation='linear', start=None): |
|
273
|
|
|
"""Use regularizer with tau gradually increasing or descreasing up to a value. Interpolates from the latest value |
|
274
|
|
|
used, (or from 'start' value if specified) to the specified 'value' using 'iters' steps. Each step is a train |
|
275
|
|
|
cycle through the collection\n |
|
276
|
|
|
Supports linear interpolation""" |
|
277
|
|
|
assert iters > 1 |
|
278
|
|
|
prev_iter = len(self._values) |
|
279
|
|
|
iter_inds = range(prev_iter, prev_iter + iters) |
|
280
|
|
|
if start is None: |
|
281
|
|
|
start = self._values[-1] |
|
282
|
|
|
iter_inds = range(prev_iter + 1, prev_iter + iters + 1) |
|
283
|
|
|
self._interpolate(prev_iter, iter_inds, start, value, interpolation=interpolation) |
|
284
|
|
|
return self |
|
285
|
|
|
|
|
286
|
|
|
def _interpolate(self, prev_iter, iter_inds, start_y, end_y, interpolation='linear'): |
|
287
|
|
|
xs = [prev_iter, iter_inds[-1]] |
|
288
|
|
|
ys = [start_y, end_y] |
|
289
|
|
|
prods = self._interpolation_kind2interpolant[interpolation]['preprocess']((xs, ys, iter_inds)) |
|
290
|
|
|
vals = self._interpolation_kind2interpolant[interpolation]['process'](prods) |
|
291
|
|
|
self._values.extend(vals) |
|
292
|
|
|
|
|
293
|
|
|
def begin_trajectory(self, name): |
|
294
|
|
|
self._name = name |
|
295
|
|
|
self._values = [] |
|
296
|
|
|
return self |
|
297
|
|
|
|
|
298
|
|
|
def create(self): |
|
299
|
|
|
return ParameterTrajectory(self._name, self._values) |
|
300
|
|
|
|
|
301
|
|
|
def create_tau_trajectory(self, values_list): |
|
302
|
|
|
"""Typical factory method""" |
|
303
|
|
|
return ParameterTrajectory('tau', values_list) |
|
304
|
|
|
|
|
305
|
|
|
def get_fit_iteration_chunks(parameter_trajectories): |
|
306
|
|
|
""" |
|
307
|
|
|
Given a list of parameter trajectories along the iteration count "dimension", returns a list of iterations tuples/steady_chunks. |
|
308
|
|
|
This steady_chunks indicate slices of the train iterations that the parameters stay constant and therefore fit can be called |
|
309
|
|
|
"consecutively" for these steady_chunks. It creates an object that encapsulates these steady_chunks\n |
|
310
|
|
|
:param list parameter_trajectories: the list of ParameterTrajectory objects |
|
311
|
|
|
:return: the newly created object |
|
312
|
|
|
:rtype: IterationChunks |
|
313
|
|
|
""" |
|
314
|
|
|
return reduce(lambda x, y: x.common_chunks(y), map(lambda x: x.steady_chunks, parameter_trajectories)) |
|
315
|
|
|
|
|
316
|
|
|
|
|
317
|
|
|
|
|
318
|
|
|
if __name__ == '__main__': |
|
319
|
|
|
tr_builder = TrajectoryBuilder() |
|
320
|
|
|
_test(tr_builder) |
|
|
|
|
|
|
321
|
|
|
|