SelfOrganizingMap.height()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 3
Code Lines 3

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 3
nop 1
dl 0
loc 3
rs 10
c 0
b 0
f 0
1
import logging
2
import attr
3
import numpy as np
4
import somoclu
5
from sklearn.cluster import KMeans
6
7
logger = logging.getLogger(__name__)
8
9
10
def infer_map(nb_cols, nb_rows, dataset, **kwargs):
11
    """Infer a self-organizing map from dataset.\n
12
    initialcodebook = None, kerneltype = 0, maptype = 'planar', gridtype = 'rectangular',
13
    compactsupport = False, neighborhood = 'gaussian', std_coeff = 0.5, initialization = None
14
    """
15
    if not hasattr(dataset, 'feature_vectors'):
16
        raise NoFeatureVectorsError("Attempted to train a Som model, "
17
                                    "but did not find feature vectors in the dataset.")
18
    som = somoclu.Somoclu(nb_cols, nb_rows, **kwargs)
19
    som.train(data=np.array(dataset.feature_vectors, dtype=np.float32))
20
    return som
21
22
23
@attr.s(slots=True)
24
class SomTrainer:
25
    infer_map: callable = attr.ib()
26
27
    @staticmethod
28
    def from_callable():
29
        return SomTrainer(infer_map)
30
31
32
@attr.s
33
class SelfOrganizingMap:
34
    som = attr.ib(init=True)
35
    dataset_name = attr.ib(init=True)
36
37
    @property
38
    def height(self):
39
        return self.som._n_rows
40
41
    @property
42
    def width(self):
43
        return self.som._n_columns
44
45
    @property
46
    def type(self):
47
        return self.som._map_type
48
49
    @property
50
    def grid_type(self):
51
        return self.som._grid_type
52
53
    def __getattr__(self, item):
54
        if item in ('n_rows', 'n_columns', 'initialization', 'map_type', 'grid_type'):
55
            item = f'_{item}'
56
        return getattr(self.som, item)
57
58
    def get_map_id(self):
59
        _ = '-'.join(str(getattr(self, attribute)) for attribute in
60
                     ['dataset_name', 'n_columns', 'n_rows', 'initialization', 'map_type', 'grid_type'])
61
        if self.som.clusters:
62
            return f'{_}_cl{self.nb_clusters}'
63
        return _
64
65
    @property
66
    def nb_clusters(self):
67
        if self.som.clusters is not None:
68
            return np.max(self.som.clusters) + 1
69
        return 0
70
71
    def neurons_coordinates(self):
72
        raise NotImplementedError
73
        # # iterate through the array of shape [nb_datapoints, 2]. Each row is the coordinates
74
        # for i, arr in enumerate(self.som.bmus):
75
        #     # of the neuron the datapoint gets attributed to (closest distance)
76
        #     attributed_cluster = self.som.clusters[arr[0], arr[1]]  # >= 0
77
        #     id2members[attributed_cluster].add(dataset[i].id)
78
79
    def datapoint_coordinates(self, index):
80
        """Get the best-matching unit (bmu) coordinates of the datapoint indexed by the input pointer.\n
81
82
        Bmu is simply the neuron on the som grid that is closest to the projected-into-2D-space datapoint."""
83
        return self.som.bmus[index][0], self.som.bmus[index][1]
84
85
    def project(self, datapoint):
86
        """Compute the coordinates of a (potentially unseen) datapoint.
87
88
        It is assumed that the codebook has been computed already."""
89
        raise NotImplementedError
90
91
    def cluster(self, nb_clusters, random_state=None):
92
        self.som.cluster(algorithm=KMeans(n_clusters=nb_clusters, random_state=random_state))
93
94
    @property
95
    def visual_umatrix(self):
96
        buffer = ''
97
        # i.e. a clustering of 11 clusters with ids 0, 1, .., 10 has a max_len = 2
98
        max_len = len(str(np.max(self.som.clusters)))
99
        for j in range(self.som.umatrix.shape[0]):
100
            buffer += ' '.join(' ' * (max_len - len(str(i))) + str(i) for i in self.som.clusters[j, :]) + '\n'
101
        return buffer
102
103
104
class NoFeatureVectorsError(Exception): pass
105