|
1
|
|
|
import pytest |
|
2
|
|
|
|
|
3
|
|
|
# TEST that when adding random noise to the same image, twice in a row, the |
|
4
|
|
|
# result is different |
|
5
|
|
|
def test_adding_noise_results_in_random_image( |
|
6
|
|
|
test_suite, |
|
7
|
|
|
): |
|
8
|
|
|
import typing as t |
|
9
|
|
|
from numpy.typing import NDArray |
|
10
|
|
|
from pathlib import Path |
|
11
|
|
|
|
|
12
|
|
|
# CONSTANTS # |
|
13
|
|
|
expected_content_image_shape = ( |
|
14
|
|
|
225, # Height |
|
15
|
|
|
300, # Width |
|
16
|
|
|
3, |
|
17
|
|
|
) |
|
18
|
|
|
# GIVEN an "original" Content Image |
|
19
|
|
|
import imageio |
|
20
|
|
|
canoe_content_image: Path = Path(test_suite) / 'data' / 'canoe_water_w300-h225.jpg' |
|
21
|
|
|
|
|
22
|
|
|
content_image: NDArray = imageio.imread(canoe_content_image) |
|
23
|
|
|
assert content_image.shape == expected_content_image_shape |
|
24
|
|
|
|
|
25
|
|
|
# GIVEN an "Add Random Noise Operation" |
|
26
|
|
|
from artificial_artwork.image import noisy |
|
27
|
|
|
NOISY_RATIO: float = 0.6 |
|
28
|
|
|
apply_noise: t.Callable[[NDArray], NDArray] = lambda matrix_array: noisy(matrix_array, NOISY_RATIO) |
|
29
|
|
|
|
|
30
|
|
|
# WHEN we add random noise to the "original" Content Image, twice in a row |
|
31
|
|
|
# noisy_content_image_matrix = self.apply_noise(self.nst_algorithm.parameters.content_image.matrix) |
|
32
|
|
|
first_noisy_content_image_matrix = apply_noise(content_image) |
|
33
|
|
|
second_noisy_content_image_matrix = apply_noise(content_image) |
|
34
|
|
|
|
|
35
|
|
|
# THEN 2 new Images are produced, and they are different |
|
36
|
|
|
assert first_noisy_content_image_matrix.shape == expected_content_image_shape |
|
37
|
|
|
assert second_noisy_content_image_matrix.shape == expected_content_image_shape |
|
38
|
|
|
assert not (first_noisy_content_image_matrix == second_noisy_content_image_matrix).all() |
|
39
|
|
|
|
|
40
|
|
|
|
|
41
|
|
|
def test_numpy_random_generator_stochastic_process_is_reproducable(): |
|
42
|
|
|
import numpy as np |
|
43
|
|
|
# Expected 1st Sample from RNG with seed 1234 |
|
44
|
|
|
expected_array_1 = np.array([ |
|
45
|
|
|
[[19.067991, -4.7921705, 16.92985], |
|
46
|
|
|
[-9.532303, -7.236118, -15.276351], |
|
47
|
|
|
[-10.329349, -7.2586427, 18.56317]], |
|
48
|
|
|
[[-9.454008, -2.359755, 4.3948326], |
|
49
|
|
|
[14.544852, 14.550307, 6.9952526], |
|
50
|
|
|
[6.3949738, 9.430308, -11.089853]] |
|
51
|
|
|
], dtype='float32') |
|
52
|
|
|
# Expected 2nd Sample from RNG with seed 1234 |
|
53
|
|
|
expected_array_2 = np.array([ |
|
54
|
|
|
[[-13.1173525, 14.816599, -17.594454], |
|
55
|
|
|
[7.3475566, 6.8495207, 4.440719], |
|
56
|
|
|
[-17.594507, 19.110771, -2.4419348]], |
|
57
|
|
|
[[ 1.3038008, -19.874708 , -9.949316 ], |
|
58
|
|
|
[ 14.339618 , -2.988066 , 9.432759 ], |
|
59
|
|
|
[ 16.88173 , -13.861033 , 19.690369 ]] |
|
60
|
|
|
], dtype='float32') |
|
61
|
|
|
|
|
62
|
|
|
expected_image_shape = ( |
|
63
|
|
|
2, # Height |
|
64
|
|
|
3, # Width |
|
65
|
|
|
3, # color channels |
|
66
|
|
|
) |
|
67
|
|
|
seed: int = 1234 |
|
68
|
|
|
rng1 = np.random.default_rng(seed=seed) |
|
69
|
|
|
# rng = np.random.default_rng() |
|
70
|
|
|
random_noise_image_11 = rng1.uniform(-20, 20, expected_image_shape).astype('float32') |
|
71
|
|
|
|
|
72
|
|
|
assert expected_array_1.shape == expected_image_shape |
|
73
|
|
|
assert random_noise_image_11.shape == expected_image_shape |
|
74
|
|
|
assert (random_noise_image_11 == expected_array_1).all() |
|
75
|
|
|
|
|
76
|
|
|
# Verify second RNG 1st sample is DIFFERENT than first RNG 1st sample |
|
77
|
|
|
rng2 = np.random.default_rng(seed=seed + 1) |
|
78
|
|
|
random_noise_image_21 = rng2.uniform(-20, 20, expected_image_shape).astype('float32') |
|
79
|
|
|
assert random_noise_image_21.shape == expected_image_shape |
|
80
|
|
|
assert not (random_noise_image_21 == expected_array_1).all() |
|
81
|
|
|
|
|
82
|
|
|
assert not (random_noise_image_21 == random_noise_image_11).all() |
|
83
|
|
|
|
|
84
|
|
|
# Take second sample and verify it is the expected 2nd Sample from RNG 1234 |
|
85
|
|
|
random_noise_image_12 = rng1.uniform(-20, 20, expected_image_shape).astype('float32') |
|
86
|
|
|
assert random_noise_image_12.shape == expected_image_shape |
|
87
|
|
|
assert not (random_noise_image_12 == expected_array_1).all() |
|
88
|
|
|
assert (random_noise_image_12 == expected_array_2).all() |
|
89
|
|
|
|
|
90
|
|
|
|
|
91
|
|
|
def test_verify_if_production_uses_the_same_seed_on_restart(): |
|
92
|
|
|
|
|
93
|
|
|
# GIVEN a "seed" value |
|
94
|
|
|
seed: int = 1234 |
|
95
|
|
|
|
|
96
|
|
|
# WHEN we add random noise to the "original" Content Image, twice in a row |
|
97
|
|
|
# noisy_content_image_matrix = self.apply_noise(self.nst_algorithm.parameters.content_image.matrix) |
|
98
|
|
|
|
|
99
|
|
|
@pytest.fixture |
|
100
|
|
|
def prod_read_image_from_disk(): |
|
101
|
|
|
import typing as t |
|
102
|
|
|
import numpy as np |
|
103
|
|
|
from numpy.typing import NDArray |
|
104
|
|
|
from artificial_artwork.image.image_operations import ( |
|
105
|
|
|
reshape_image, |
|
106
|
|
|
subtract, |
|
107
|
|
|
) |
|
108
|
|
|
from artificial_artwork.image.image_factory import ImageFactory |
|
109
|
|
|
from artificial_artwork.disk_operations import Disk |
|
110
|
|
|
|
|
111
|
|
|
def _prod_read_image_from_disk(image_path: str) -> NDArray: |
|
112
|
|
|
means = np.array([123.68, 116.779, 103.939]).reshape((1,1,1,3)) # means |
|
113
|
|
|
image_fct = ImageFactory( |
|
114
|
|
|
Disk.load_image, |
|
115
|
|
|
) |
|
116
|
|
|
prod_preprocessing_pipeline = [ |
|
117
|
|
|
lambda x: reshape_image(x, ((1,) + x.shape)), |
|
118
|
|
|
lambda x: subtract(x, means), |
|
119
|
|
|
] |
|
120
|
|
|
img_wrapper = image_fct.from_disk(image_path, prod_preprocessing_pipeline) |
|
121
|
|
|
# file_path: str |
|
122
|
|
|
# matrix: NDArray |
|
123
|
|
|
return img_wrapper.matrix |
|
124
|
|
|
return _prod_read_image_from_disk |
|
125
|
|
|
|
|
126
|
|
|
|
|
127
|
|
|
# TEST that the first operation to add random noise to an image results to the |
|
128
|
|
|
# same prerecorded generated-with-noise image produced with the same seed |
|
129
|
|
|
def test_adding_noise_with_the_same_seed_results_in_same_image( |
|
130
|
|
|
test_suite, |
|
131
|
|
|
prod_read_image_from_disk, |
|
132
|
|
|
): |
|
133
|
|
|
import typing as t |
|
134
|
|
|
from numpy.typing import NDArray |
|
135
|
|
|
from pathlib import Path |
|
136
|
|
|
import numpy as np |
|
137
|
|
|
rng = np.random.default_rng(seed=42) |
|
138
|
|
|
|
|
139
|
|
|
# CONSTANTS # |
|
140
|
|
|
expected_content_image_shape = ( |
|
141
|
|
|
225, # Height |
|
142
|
|
|
300, # Width |
|
143
|
|
|
3, |
|
144
|
|
|
) |
|
145
|
|
|
# GIVEN the Noisy Content Image of Running the Production Demo on process A |
|
146
|
|
|
noisy_canoe_content_image_v1: Path = Path(test_suite) / 'data' / 'demo-image-noisy-iter-1-1234_v1.png' |
|
147
|
|
|
# noisy_content_image_v1: NDArray = imageio.imread(noisy_canoe_content_image_v1) |
|
148
|
|
|
noisy_content_image_v1: NDArray = prod_read_image_from_disk(noisy_canoe_content_image_v1) |
|
149
|
|
|
# GIVEN the Noisy Content Image of Running the Production Demo on process B |
|
150
|
|
|
noisy_canoe_content_image_v2: Path = Path(test_suite) / 'data' / 'demo-image-noisy-iter-1-1234_v2.png' |
|
151
|
|
|
# noisy_content_image_v2: NDArray = imageio.imread(noisy_canoe_content_image_v2) |
|
152
|
|
|
noisy_content_image_v2: NDArray = prod_read_image_from_disk(noisy_canoe_content_image_v2) |
|
153
|
|
|
|
|
154
|
|
|
# THEN since the Production RNG uses initializes a Stochastic Process with default Seed 1234 |
|
155
|
|
|
# THEN the Noisy Content Image of Running the Production Demo on process A |
|
156
|
|
|
# is the same as the Noisy Content Image of Running the Production Demo on process B |
|
157
|
|
|
assert (noisy_content_image_v1 == noisy_content_image_v2).all() |
|
158
|
|
|
|
|
159
|
|
|
# GIVEN a "seed" value |
|
160
|
|
|
PROD_DEFAULT_SEED = 1234 |
|
161
|
|
|
|
|
162
|
|
|
# GIVEN an "Add Random Noise Operation" |
|
163
|
|
|
from artificial_artwork.image.image_operations import ImageNoiseAdder |
|
164
|
|
|
noise_adder = ImageNoiseAdder(seed=PROD_DEFAULT_SEED) |
|
165
|
|
|
PROD_DEFAULT_NOISY_RATIO: float = 0.6 |
|
166
|
|
|
apply_noise = lambda x: noise_adder(x, PROD_DEFAULT_NOISY_RATIO) |
|
167
|
|
|
|
|
168
|
|
|
# GIVEN an "original" Content Image |
|
169
|
|
|
canoe_content_image: Path = Path(test_suite) / 'data' / 'canoe_water_w300-h225.jpg' |
|
170
|
|
|
content_image: NDArray = prod_read_image_from_disk(canoe_content_image) |
|
171
|
|
|
|
|
172
|
|
|
assert content_image.shape == (1,) + expected_content_image_shape |
|
173
|
|
|
|
|
174
|
|
|
# WHEN we add random noise to the "original" Content Image, twice in a row |
|
175
|
|
|
# noisy_content_image_matrix = self.apply_noise(self.nst_algorithm.parameters.content_image.matrix) |
|
176
|
|
|
first_noisy_content_image_matrix = apply_noise(content_image) |
|
177
|
|
|
second_noisy_content_image_matrix = apply_noise(content_image) |
|
178
|
|
|
|
|
179
|
|
|
# assert first_noisy_content_image_matrix.shape == expected_content_image_shape |
|
180
|
|
|
# assert second_noisy_content_image_matrix.shape == expected_content_image_shape |
|
181
|
|
|
|
|
182
|
|
|
# THEN 2 new Images are produced, and they are different |
|
183
|
|
|
assert not (first_noisy_content_image_matrix == second_noisy_content_image_matrix).all() |
|
184
|
|
|
|
|
185
|
|
|
# THEN the first noisy image is the same as the prerecorded generated-with-noise image |
|
186
|
|
|
# produced with the same seed |
|
187
|
|
|
from artificial_artwork.image.image_operations import convert_to_uint8 |
|
188
|
|
|
# if we have shape of form (1, Width, Height, Number_of_Color_Channels) |
|
189
|
|
|
if first_noisy_content_image_matrix.ndim == 4 and first_noisy_content_image_matrix.shape[0] == 1: |
|
190
|
|
|
import numpy as np |
|
191
|
|
|
# reshape to (Width, Height, Number_of_Color_Channels) |
|
192
|
|
|
first_noisy_content_image_matrix = np.reshape(first_noisy_content_image_matrix, tuple(first_noisy_content_image_matrix.shape[1:])) |
|
193
|
|
|
if str(first_noisy_content_image_matrix.dtype) != 'uint8': |
|
194
|
|
|
first_noisy_content_image_matrix = convert_to_uint8(first_noisy_content_image_matrix) |
|
195
|
|
|
|
|
196
|
|
|
from artificial_artwork.disk_operations import Disk |
|
197
|
|
|
ppath = '/tmp/nst-unit-test-image.png' |
|
198
|
|
|
Disk.save_image(first_noisy_content_image_matrix, |
|
199
|
|
|
ppath, save_format='png') |
|
200
|
|
|
first_noisy_content_image_matrix: NDArray = prod_read_image_from_disk(ppath) |
|
201
|
|
|
|
|
202
|
|
|
assert first_noisy_content_image_matrix.shape == noisy_content_image_v1.shape |
|
203
|
|
|
assert (first_noisy_content_image_matrix == noisy_content_image_v1).all() |
|
204
|
|
|
|
|
205
|
|
|
|
|
206
|
|
|
def test_prod_noise(): |
|
207
|
|
|
import numpy as np |
|
208
|
|
|
from artificial_artwork.image.image_operations import ImageNoiseAdder |
|
209
|
|
|
|
|
210
|
|
|
# Expected 1st Sample from RNG with seed 1234 |
|
211
|
|
|
expected_array_1 = np.array([ |
|
212
|
|
|
[[19.067991, -4.7921705, 16.92985], |
|
213
|
|
|
[-9.532303, -7.236118, -15.276351], |
|
214
|
|
|
[-10.329349, -7.2586427, 18.56317]], |
|
215
|
|
|
[[-9.454008, -2.359755, 4.3948326], |
|
216
|
|
|
[14.544852, 14.550307, 6.9952526], |
|
217
|
|
|
[6.3949738, 9.430308, -11.089853]] |
|
218
|
|
|
], dtype='float32') |
|
219
|
|
|
# Expected 2nd Sample from RNG with seed 1234 |
|
220
|
|
|
expected_array_2 = np.array([ |
|
221
|
|
|
[[-13.1173525, 14.816599, -17.594454], |
|
222
|
|
|
[7.3475566, 6.8495207, 4.440719], |
|
223
|
|
|
[-17.594507, 19.110771, -2.4419348]], |
|
224
|
|
|
[[ 1.3038008, -19.874708 , -9.949316 ], |
|
225
|
|
|
[ 14.339618 , -2.988066 , 9.432759 ], |
|
226
|
|
|
[ 16.88173 , -13.861033 , 19.690369 ]] |
|
227
|
|
|
], dtype='float32') |
|
228
|
|
|
|
|
229
|
|
|
expected_image_shape = ( |
|
230
|
|
|
2, # Height |
|
231
|
|
|
3, # Width |
|
232
|
|
|
3, # color channels |
|
233
|
|
|
) |
|
234
|
|
|
seed: int = 1234 |
|
235
|
|
|
|
|
236
|
|
|
rng = ImageNoiseAdder(seed=seed)._default_rng |
|
237
|
|
|
|
|
238
|
|
|
random_noise_image_11 = rng(-20, 20, expected_image_shape) |
|
239
|
|
|
|
|
240
|
|
|
assert expected_array_1.shape == expected_image_shape |
|
241
|
|
|
assert random_noise_image_11.shape == expected_image_shape |
|
242
|
|
|
assert (random_noise_image_11 == expected_array_1).all() |
|
243
|
|
|
|
|
244
|
|
|
# Take second sample and verify it is the expected 2nd Sample from RNG 1234 |
|
245
|
|
|
random_noise_image_12 = rng(-20, 20, expected_image_shape) |
|
246
|
|
|
|
|
247
|
|
|
assert random_noise_image_12.shape == expected_image_shape |
|
248
|
|
|
assert not (random_noise_image_12 == expected_array_1).all() |
|
249
|
|
|
assert (random_noise_image_12 == expected_array_2).all() |
|
250
|
|
|
|
|
251
|
|
|
|
|
252
|
|
|
|
|
253
|
|
|
def test_changing_seeds_prod_noise(): |
|
254
|
|
|
import numpy as np |
|
255
|
|
|
from artificial_artwork.image.image_operations import ImageNoiseAdder |
|
256
|
|
|
|
|
257
|
|
|
# Expected 1st Sample from RNG with seed 1234 |
|
258
|
|
|
expected_array_1 = np.array([ |
|
259
|
|
|
[[19.067991, -4.7921705, 16.92985], |
|
260
|
|
|
[-9.532303, -7.236118, -15.276351], |
|
261
|
|
|
[-10.329349, -7.2586427, 18.56317]], |
|
262
|
|
|
[[-9.454008, -2.359755, 4.3948326], |
|
263
|
|
|
[14.544852, 14.550307, 6.9952526], |
|
264
|
|
|
[6.3949738, 9.430308, -11.089853]] |
|
265
|
|
|
], dtype='float32') |
|
266
|
|
|
# Expected 2nd Sample from RNG with seed 1234 |
|
267
|
|
|
expected_array_2 = np.array([ |
|
268
|
|
|
[[-13.1173525, 14.816599, -17.594454], |
|
269
|
|
|
[7.3475566, 6.8495207, 4.440719], |
|
270
|
|
|
[-17.594507, 19.110771, -2.4419348]], |
|
271
|
|
|
[[ 1.3038008, -19.874708 , -9.949316 ], |
|
272
|
|
|
[ 14.339618 , -2.988066 , 9.432759 ], |
|
273
|
|
|
[ 16.88173 , -13.861033 , 19.690369 ]] |
|
274
|
|
|
], dtype='float32') |
|
275
|
|
|
|
|
276
|
|
|
expected_image_shape = ( |
|
277
|
|
|
2, # Height |
|
278
|
|
|
3, # Width |
|
279
|
|
|
3, # color channels |
|
280
|
|
|
) |
|
281
|
|
|
seed: int = 1234 |
|
282
|
|
|
|
|
283
|
|
|
rng = ImageNoiseAdder(seed=seed)._default_rng |
|
284
|
|
|
|
|
285
|
|
|
random_noise_image_11 = rng(-20, 20, expected_image_shape) |
|
286
|
|
|
|
|
287
|
|
|
assert expected_array_1.shape == expected_image_shape |
|
288
|
|
|
assert random_noise_image_11.shape == expected_image_shape |
|
289
|
|
|
assert (random_noise_image_11 == expected_array_1).all() |
|
290
|
|
|
|
|
291
|
|
|
# use infra to configure RNG with the seed |
|
292
|
|
|
# rng2 = ImageNoiseAdder._create_rng(seed=seed+1) |
|
293
|
|
|
|
|
294
|
|
|
# use infra to configure RNG with Previous Seed |
|
295
|
|
|
rng1 = ImageNoiseAdder._create_rng(seed=seed) |
|
296
|
|
|
|
|
297
|
|
|
# Take second sample from RNG 1 |
|
298
|
|
|
random_noise_image_12 = rng1(-20, 20, expected_image_shape) |
|
299
|
|
|
|
|
300
|
|
|
assert random_noise_image_12.shape == expected_image_shape |
|
301
|
|
|
assert not (random_noise_image_12 == expected_array_2).all() |
|
302
|
|
|
|
|
303
|
|
|
random_noise_image_13 = rng(-20, 20, expected_image_shape) |
|
304
|
|
|
assert random_noise_image_13.shape == expected_image_shape |
|
305
|
|
|
assert (random_noise_image_13 == expected_array_2).all() |
|
306
|
|
|
|