|
1
|
|
|
from pathlib import Path |
|
2
|
|
|
|
|
3
|
|
|
from .disk_operations import Disk |
|
4
|
|
|
from .styling_observer import StylingObserver |
|
5
|
|
|
from .algorithm import NSTAlgorithm, AlogirthmParameters |
|
6
|
|
|
from .nst_tf_algorithm import NSTAlgorithmRunner |
|
7
|
|
|
from .termination_condition_adapter_factory import TerminationConditionAdapterFactory |
|
8
|
|
|
from .nst_image import noisy, convert_to_uint8 |
|
9
|
|
|
from .production_networks import NetworkDesign |
|
10
|
|
|
from .pretrained_model import ModelHandlerFacility |
|
11
|
|
|
from .utils import load_pretrained_model_functions, read_images |
|
12
|
|
|
|
|
13
|
|
|
this_file_directory = Path(__file__).parent |
|
14
|
|
|
source_root_dir = this_file_directory.parent.parent |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
def create_algo_runner( |
|
18
|
|
|
iterations=100, |
|
19
|
|
|
output_folder='gui-output-folder', |
|
20
|
|
|
content_img_file=None, |
|
21
|
|
|
style_img_file=None, |
|
22
|
|
|
): |
|
23
|
|
|
print("[DEBUG] output type: {}".format(type(output_folder))) |
|
24
|
|
|
|
|
25
|
|
|
current_directory = Path.cwd() |
|
26
|
|
|
|
|
27
|
|
|
termination_condition = 'max-iterations' |
|
28
|
|
|
|
|
29
|
|
|
content_img_file = content_img_file if content_img_file else source_root_dir / 'tests' / 'data' / 'canoe_water_w300-h225.jpg' |
|
30
|
|
|
style_img_file = style_img_file if style_img_file else source_root_dir / 'tests' / 'data' / 'blue-red_w300-h225.jpg' |
|
31
|
|
|
|
|
32
|
|
|
content_image, style_image = read_images(content_img_file, style_img_file) |
|
33
|
|
|
|
|
34
|
|
|
load_pretrained_model_functions() # ie import VGG ModelHandler implementation (to allow facility creating instances) |
|
35
|
|
|
model_design = type('ModelDesign', (), { |
|
36
|
|
|
'pretrained_model': ModelHandlerFacility.create('vgg'), |
|
37
|
|
|
'network_design': NetworkDesign.from_default_vgg() |
|
38
|
|
|
}) |
|
39
|
|
|
model_design.pretrained_model.load_model_layers() |
|
40
|
|
|
|
|
41
|
|
|
termination_condition = TerminationConditionAdapterFactory.create( |
|
42
|
|
|
termination_condition, |
|
43
|
|
|
iterations, # maximun number of iterations to run the algorithm |
|
44
|
|
|
) |
|
45
|
|
|
|
|
46
|
|
|
print(f' -- Termination Condition: {termination_condition.termination_condition}') |
|
47
|
|
|
|
|
48
|
|
|
algorithm_parameters = AlogirthmParameters( |
|
49
|
|
|
content_image, |
|
50
|
|
|
style_image, |
|
51
|
|
|
termination_condition, |
|
52
|
|
|
output_folder, |
|
53
|
|
|
) |
|
54
|
|
|
|
|
55
|
|
|
algorithm = NSTAlgorithm(algorithm_parameters) |
|
56
|
|
|
|
|
57
|
|
|
noisy_ratio = 0.6 # ratio |
|
58
|
|
|
|
|
59
|
|
|
algorithm_runner = NSTAlgorithmRunner.default( |
|
60
|
|
|
lambda matrix: noisy(matrix, noisy_ratio), |
|
61
|
|
|
) |
|
62
|
|
|
|
|
63
|
|
|
algorithm_runner.progress_subject.add( |
|
64
|
|
|
termination_condition, |
|
65
|
|
|
) |
|
66
|
|
|
algorithm_runner.persistance_subject.add( |
|
67
|
|
|
StylingObserver(Disk.save_image, convert_to_uint8, iterations) |
|
68
|
|
|
) |
|
69
|
|
|
return { |
|
70
|
|
|
'run': lambda: algorithm_runner.run(algorithm, model_design), |
|
71
|
|
|
'subscribe': lambda observer: algorithm_runner.progress_subject.add(observer), |
|
72
|
|
|
} |
|
73
|
|
|
# return algorithm_runner, lambda: algorithm_runner.run(algorithm, model_design) |
|
74
|
|
|
|
|
75
|
|
|
# algorithm_runner.run(algorithm, model_design) |
|
76
|
|
|
|