|
1
|
|
|
import os |
|
2
|
|
|
import tkinter as tk |
|
3
|
|
|
from tkinter import filedialog |
|
4
|
|
|
import threading |
|
5
|
|
|
from pathlib import Path |
|
6
|
|
|
from PIL import Image, ImageTk # You need to install the Python Imaging Library (PIL) |
|
7
|
|
|
|
|
8
|
|
|
# from artificial_artwork._demo import create_algo_runner |
|
9
|
|
|
from artificial_artwork._main import create_algo_runner |
|
10
|
|
|
from artificial_artwork.image import convert_to_uint8 |
|
11
|
|
|
|
|
12
|
|
|
# Dir in which this python file/script resides within the Source Distribution (ie Git Repo) |
|
13
|
|
|
MY_DIR: str = os.path.dirname(os.path.realpath(__file__)) |
|
14
|
|
|
|
|
15
|
|
|
|
|
16
|
|
|
# CONSTANTS |
|
17
|
|
|
IMAGE_COMP_ASSETS = { |
|
18
|
|
|
'content': { |
|
19
|
|
|
'load_button_text': "Select Content Image", |
|
20
|
|
|
'label_text': "Content Image:", |
|
21
|
|
|
}, |
|
22
|
|
|
'style': { |
|
23
|
|
|
'load_button_text': "Select Style Image", |
|
24
|
|
|
'label_text': "Style Image:", |
|
25
|
|
|
}, |
|
26
|
|
|
} |
|
27
|
|
|
|
|
28
|
|
|
# width x height |
|
29
|
|
|
WINDOW_GEOMETRY: str = '2600x1800' |
|
30
|
|
|
|
|
31
|
|
|
# Content and Style Images rendering dimensions |
|
32
|
|
|
INPUT_IMAGE_THUMBNAIL_SIZE = (200, 200) |
|
33
|
|
|
|
|
34
|
|
|
# Generated Image rendering dimensions |
|
35
|
|
|
GENERATED_IMAGE_THUMBNAIL_SIZE = (500, 500) |
|
36
|
|
|
|
|
37
|
|
|
|
|
38
|
|
|
# Helpers Objects |
|
39
|
|
|
|
|
40
|
|
|
img_type_2_path = {} |
|
41
|
|
|
|
|
42
|
|
|
# Helper Functions |
|
43
|
|
|
|
|
44
|
|
|
# Handle Click on Load Content/Style Image Button by loading the Image and rendering it on the UI |
|
45
|
|
View Code Duplication |
def _build_open_image_dialog_callback_v2(x, image_type: str): |
|
|
|
|
|
|
46
|
|
|
def _open_file_dialog_v2(): |
|
47
|
|
|
file_path = filedialog.askopenfilename() |
|
48
|
|
|
if file_path: |
|
49
|
|
|
image_label = x['image_label'] |
|
50
|
|
|
image_pane = x['image_pane'] |
|
51
|
|
|
|
|
52
|
|
|
img_type_2_path[image_type] = file_path |
|
53
|
|
|
|
|
54
|
|
|
image = Image.open(file_path) |
|
55
|
|
|
image.thumbnail(INPUT_IMAGE_THUMBNAIL_SIZE) # Resize the image to fit in the pane |
|
56
|
|
|
photo = ImageTk.PhotoImage(image=image) |
|
57
|
|
|
|
|
58
|
|
|
image_pane.config(image=photo) |
|
59
|
|
|
image_pane.image = photo |
|
60
|
|
|
|
|
61
|
|
|
image_label.config(text=f'{IMAGE_COMP_ASSETS[image_type]["label_text"]} {file_path}') |
|
62
|
|
|
image_label.update_idletasks() |
|
63
|
|
|
return _open_file_dialog_v2 |
|
64
|
|
|
|
|
65
|
|
|
|
|
66
|
|
|
def _load_nst_image_and_render(nst_image_ui, file_path): |
|
67
|
|
|
image_label = nst_image_ui['image_label'] # what gets shown on the UI for a Loaded NST Image (Content or Style) |
|
68
|
|
|
image_pane = nst_image_ui['image_pane'] # where the image gets rendered on the UI |
|
69
|
|
|
image_type: str = nst_image_ui['image_type'] # item in set {'content', 'style'} |
|
70
|
|
|
|
|
71
|
|
|
# Inform Global State of the currently selected Image to use as Input for the NST Algorithm |
|
72
|
|
|
img_type_2_path[image_type] = file_path |
|
73
|
|
|
|
|
74
|
|
|
image = Image.open(file_path) |
|
75
|
|
|
image.thumbnail(INPUT_IMAGE_THUMBNAIL_SIZE) # Resize the image to fit in the pane |
|
76
|
|
|
photo = ImageTk.PhotoImage(image=image) |
|
77
|
|
|
|
|
78
|
|
|
image_pane.config(image=photo) |
|
79
|
|
|
image_pane.image = photo |
|
80
|
|
|
|
|
81
|
|
|
image_label.config(text=f'{IMAGE_COMP_ASSETS[image_type]["label_text"]} {file_path}') |
|
82
|
|
|
image_label.update_idletasks() |
|
83
|
|
|
|
|
84
|
|
|
# MAIN |
|
85
|
|
|
|
|
86
|
|
|
images_components_data = { |
|
87
|
|
|
'content': dict( |
|
88
|
|
|
# Data to be shared when implementing handling of initialization (initial Render) or updating (re-render 'request') of UI Components |
|
89
|
|
|
IMAGE_COMP_ASSETS['content'], |
|
90
|
|
|
# image_dialog key maps to a Callable that takes NO input (args and/or kwargs) |
|
91
|
|
|
# this callable should be an object compatible as value to the 'command' (kwarg) of a tkinter.Button constructor |
|
92
|
|
|
# the callable implements what happens when the User clicks the button |
|
93
|
|
|
image_dialog=lambda x: _build_open_image_dialog_callback_v2(x, 'content'), |
|
94
|
|
|
), |
|
95
|
|
|
'style': dict( |
|
96
|
|
|
# Data to be shared when implementing handling of initialization (initial Render) or updating (re-render 'request') of UI Components |
|
97
|
|
|
IMAGE_COMP_ASSETS['style'], |
|
98
|
|
|
image_dialog=lambda x: _build_open_image_dialog_callback_v2(x, 'style'), |
|
99
|
|
|
), |
|
100
|
|
|
} |
|
101
|
|
|
|
|
102
|
|
|
|
|
103
|
|
|
# Create the main window |
|
104
|
|
|
root = tk.Tk() |
|
105
|
|
|
root.title("Neural Style Transfer - Desktop") |
|
106
|
|
|
# width x height |
|
107
|
|
|
root.geometry("2600x1800") # Larger window size |
|
108
|
|
|
|
|
109
|
|
|
# Add a label to describe the purpose of the GUI |
|
110
|
|
|
description_label = tk.Label(root, text="Select a file using the buttons below:") |
|
111
|
|
|
description_label.pack(pady=10) # Add padding |
|
112
|
|
|
|
|
113
|
|
|
|
|
114
|
|
|
# START - CONTENT IMAGE UI/UX |
|
115
|
|
|
|
|
116
|
|
|
# BUTTON -> Load Content Image |
|
117
|
|
|
select_content_image_btn = tk.Button( |
|
118
|
|
|
root, |
|
119
|
|
|
text=images_components_data['content']['load_button_text'], |
|
120
|
|
|
command=lambda: images_components_data['content']['image_dialog']({ |
|
121
|
|
|
'image_label': content_image_label, # The Label UI Element to update when selected and loaded Loaded |
|
122
|
|
|
'image_pane': content_image_pane, # The Pane to Render the Content Image once Selected and Loaded |
|
123
|
|
|
})(), |
|
124
|
|
|
) |
|
125
|
|
|
select_content_image_btn.pack(pady=5) # Add padding |
|
126
|
|
|
|
|
127
|
|
|
# LABEL -> Show path of loaded Content Image |
|
128
|
|
|
DEMO_IMAGE = Path(MY_DIR) / 'tests' / 'data' / 'canoe_water_w300-h225.jpg' |
|
129
|
|
|
|
|
130
|
|
|
# Initialize with rendered text conveying the message that no image has been selected yet |
|
131
|
|
|
|
|
132
|
|
|
content_image_label = tk.Label(root, text=images_components_data['content']['label_text']) |
|
133
|
|
|
content_image_label.pack() |
|
134
|
|
|
|
|
135
|
|
|
# LABEL -> PANE to Render the Content Image |
|
136
|
|
|
content_image_pane = tk.Label(root, width=0, height=0, bg="white") # Set initial dimensions to 0 |
|
137
|
|
|
# content_image_pane = tk.Label(root, width=200, height=200, bg="white") |
|
138
|
|
|
content_image_pane.pack() |
|
139
|
|
|
|
|
140
|
|
|
# Automatically Load the Demo Content Image: read from disk update Image Pane and Label in UI |
|
141
|
|
|
# content_image_label.config(text=f"{images_components_data['content']['label_text']} {DEMO_IMAGE}") |
|
142
|
|
|
# content_image_label.update_idletasks() |
|
143
|
|
|
# content_image_label.pack() |
|
144
|
|
|
|
|
145
|
|
|
content_image_label.pack() |
|
146
|
|
|
_load_nst_image_and_render({ |
|
147
|
|
|
'image_label': content_image_label, |
|
148
|
|
|
'image_pane': content_image_pane, |
|
149
|
|
|
'image_type': 'content', |
|
150
|
|
|
}, DEMO_IMAGE) |
|
151
|
|
|
|
|
152
|
|
|
# END - CONTENT IMAGE UI/UX |
|
153
|
|
|
|
|
154
|
|
|
|
|
155
|
|
|
# Start - STYLE IMAGE UI/UX |
|
156
|
|
|
|
|
157
|
|
|
# BUTTON -> Load Style Image |
|
158
|
|
|
load_style_image_btn = tk.Button( |
|
159
|
|
|
root, |
|
160
|
|
|
text=images_components_data['style']['load_button_text'], |
|
161
|
|
|
command=lambda: images_components_data['style']['image_dialog']({ |
|
162
|
|
|
'image_label': style_image_label, # update label once user selected a file from the dialog |
|
163
|
|
|
'image_pane': style_image_pane, |
|
164
|
|
|
})(), |
|
165
|
|
|
) |
|
166
|
|
|
load_style_image_btn.pack(pady=5) # Add padding |
|
167
|
|
|
|
|
168
|
|
|
DEMO_STYLE_IMAGE = Path(MY_DIR) / 'tests' / 'data' / 'blue-red_w300-h225.jpg' |
|
169
|
|
|
|
|
170
|
|
|
# LABEL -> Show path of loaded Style Image |
|
171
|
|
|
|
|
172
|
|
|
# Initialize and Render constant Placeholder text |
|
173
|
|
|
style_image_label = tk.Label(root, text=images_components_data['style']['label_text']) |
|
174
|
|
|
style_image_label.pack() |
|
175
|
|
|
|
|
176
|
|
|
# LABEL -> PANE to Render the Style Image |
|
177
|
|
|
style_image_pane = tk.Label(root, width=0, height=0, bg="white") # Set initial dimensions to 0 |
|
178
|
|
|
# style_image_pane = tk.Label(root, width=200, height=200, bg="white") |
|
179
|
|
|
style_image_pane.pack() |
|
180
|
|
|
|
|
181
|
|
|
# OR Initialize with preloaded Demo Content Image |
|
182
|
|
|
# style_image_label = tk.Label(root, |
|
183
|
|
|
# text=f"{images_components_data['content']['label_text']} {DEMO_STYLE_IMAGE}" |
|
184
|
|
|
# ) |
|
185
|
|
|
|
|
186
|
|
|
# style_image_label.config(text=f"{images_components_data['content']['label_text']} {DEMO_STYLE_IMAGE}") |
|
187
|
|
|
# style_image_label.update_idletasks() |
|
188
|
|
|
|
|
189
|
|
|
# style_image_label.pack() |
|
190
|
|
|
|
|
191
|
|
|
_load_nst_image_and_render({ |
|
192
|
|
|
'image_label': style_image_label, |
|
193
|
|
|
'image_pane': style_image_pane, |
|
194
|
|
|
'image_type': 'style', |
|
195
|
|
|
}, DEMO_STYLE_IMAGE) |
|
196
|
|
|
|
|
197
|
|
|
|
|
198
|
|
|
# End - STYLE IMAGE UI/UX |
|
199
|
|
|
|
|
200
|
|
|
|
|
201
|
|
|
# GENERATED IMAGE UI/UX |
|
202
|
|
|
|
|
203
|
|
|
# Helper Update Callback |
|
204
|
|
|
def update_image_thread(progress, gen_image_pane, _iteration_count_label): |
|
205
|
|
|
t = threading.Thread( |
|
206
|
|
|
target=update_image, |
|
207
|
|
|
args=(progress, gen_image_pane, _iteration_count_label) |
|
208
|
|
|
) |
|
209
|
|
|
t.start() |
|
210
|
|
|
|
|
211
|
|
|
# Function to update the GUI with the result from the backend task |
|
212
|
|
|
def update_image(progress, gen_image_pane, _iteration_count_label): |
|
213
|
|
|
numpy_image_array = progress.state.matrix |
|
214
|
|
|
current_iteration_count: int = progress.state.metrics['iterations'] |
|
215
|
|
|
|
|
216
|
|
|
# if we have shape of form (1, Width, Height, Number_of_Color_Channels) |
|
217
|
|
|
if numpy_image_array.ndim == 4 and numpy_image_array.shape[0] == 1: |
|
218
|
|
|
import numpy as np |
|
219
|
|
|
# reshape to (Width, Height, Number_of_Color_Channels) |
|
220
|
|
|
matrix = np.reshape(numpy_image_array, tuple(numpy_image_array.shape[1:])) |
|
221
|
|
|
|
|
222
|
|
|
if str(matrix.dtype) != 'uint8': |
|
|
|
|
|
|
223
|
|
|
matrix = convert_to_uint8(matrix) |
|
224
|
|
|
|
|
225
|
|
|
## Prod code: broken |
|
226
|
|
|
# convert numpy array to PIL image |
|
227
|
|
|
# image = Image.fromarray(numpy_image_array) |
|
228
|
|
|
## |
|
229
|
|
|
|
|
230
|
|
|
image = Image.fromarray(matrix) |
|
231
|
|
|
|
|
232
|
|
|
# Resize the image to fit in the pane |
|
233
|
|
|
image.thumbnail(GENERATED_IMAGE_THUMBNAIL_SIZE) |
|
234
|
|
|
# Convert the image to PhotoImage |
|
235
|
|
|
photo = ImageTk.PhotoImage(image=image) |
|
236
|
|
|
# Update the image label with the new image |
|
237
|
|
|
gen_image_pane.config(image=photo) |
|
238
|
|
|
gen_image_pane.image = photo |
|
239
|
|
|
|
|
240
|
|
|
_iteration_count_label.config(text=f'Iteration Count: {current_iteration_count}') |
|
241
|
|
|
|
|
242
|
|
|
backend_object = create_algo_runner( |
|
243
|
|
|
iterations=100, # NB of Times to pass Image through the Network |
|
244
|
|
|
output_folder='gui-output-folder', # Output Folder to store gen img snapshots |
|
245
|
|
|
noisy_ratio=0.6, |
|
246
|
|
|
) |
|
247
|
|
|
# { |
|
248
|
|
|
# 'algorithm_runner': algorithm_runner, |
|
249
|
|
|
# 'run': lambda: algorithm_runner.run(algorithm, model_design), |
|
250
|
|
|
# 'subscribe': lambda observer: algorithm_runner.progress_subject.add(observer), |
|
251
|
|
|
# } |
|
252
|
|
|
|
|
253
|
|
|
observer = type('Observer', (), { |
|
254
|
|
|
# 'update': lambda progress: update_image(progress, generated_image_pane, iteration_count_label), |
|
255
|
|
|
'update': lambda progress: update_image_thread(progress, generated_image_pane, iteration_count_label), |
|
256
|
|
|
}) |
|
257
|
|
|
backend_object['subscribe'](observer) |
|
258
|
|
|
|
|
259
|
|
|
# Pane for displaying generated image (this will be updated during the learning loop) |
|
260
|
|
|
generated_image_label = tk.Label(root, text="Generated Image:") |
|
261
|
|
|
generated_image_label.pack(pady=10) |
|
262
|
|
|
|
|
263
|
|
|
generated_image_pane = tk.Label(root, width=0, height=0, bg="white") # Set initial dimensions to 0 |
|
264
|
|
|
# generated_image_pane = tk.Label(root, width=600, height=600, bg="white") |
|
265
|
|
|
generated_image_pane.pack(pady=5) |
|
266
|
|
|
|
|
267
|
|
|
# ITERATION COUNT UI/UX |
|
268
|
|
|
iteration_count_label = tk.Label(root, text="Iteration Count:") |
|
269
|
|
|
iteration_count_label.pack(pady=5) |
|
270
|
|
|
|
|
271
|
|
|
|
|
272
|
|
|
# RUN NST ALGORITHM UI/UX |
|
273
|
|
|
|
|
274
|
|
|
# Helper Run Functions |
|
275
|
|
|
|
|
276
|
|
|
# Run Computations |
|
277
|
|
View Code Duplication |
def run_nst(): |
|
|
|
|
|
|
278
|
|
|
backend_object = create_algo_runner( |
|
279
|
|
|
iterations=100, # NB of Times to pass Image through the Network |
|
280
|
|
|
output_folder='gui-output-folder', # Output Folder to store gen img snapshots |
|
281
|
|
|
noisy_ratio=0.6, |
|
282
|
|
|
) |
|
283
|
|
|
observer = type('Observer', (), { |
|
284
|
|
|
'update': lambda progress: update_image(progress, generated_image_pane, iteration_count_label), |
|
285
|
|
|
# 'update': lambda progress: update_image_thread(progress, generated_image_pane, iteration_count_label), |
|
286
|
|
|
}) |
|
287
|
|
|
backend_object['subscribe'](observer) |
|
288
|
|
|
|
|
289
|
|
|
content_image_path = img_type_2_path['content'] |
|
290
|
|
|
style_image_path = img_type_2_path['style'] |
|
291
|
|
|
|
|
292
|
|
|
if content_image_path and style_image_path: |
|
293
|
|
|
backend_object['run']( |
|
294
|
|
|
content_image_path, |
|
295
|
|
|
style_image_path, |
|
296
|
|
|
) |
|
297
|
|
|
|
|
298
|
|
|
import concurrent.futures |
|
299
|
|
|
# Function to run the backend task in a separate thread |
|
300
|
|
|
def start_backend_task(): |
|
301
|
|
|
|
|
302
|
|
|
# # Create your backend object using create_algo_runner |
|
303
|
|
|
# backend_object = create_algo_runner(iterations=100, output_folder='gui-output-folder', noisy_ratio=0.6) |
|
304
|
|
|
|
|
305
|
|
|
# # Define an observer object to handle progress updates, by updating the UI |
|
306
|
|
|
# observer = type('Observer', (), { |
|
307
|
|
|
# 'update': lambda progress: update_image(progress, generated_image_pane, iteration_count_label), |
|
308
|
|
|
# # 'update': lambda progress: update_image_thread(progress, generated_image_pane, iteration_count_label), |
|
309
|
|
|
# }) |
|
310
|
|
|
|
|
311
|
|
|
# # Subscribe the observer to the backend object's progress |
|
312
|
|
|
# backend_object['subscribe'](observer) |
|
313
|
|
|
|
|
314
|
|
|
content_image_path = img_type_2_path['content'] |
|
315
|
|
|
style_image_path = img_type_2_path['style'] |
|
316
|
|
|
|
|
317
|
|
|
if content_image_path and style_image_path: |
|
318
|
|
|
def _run(): |
|
319
|
|
|
backend_object['run']( |
|
320
|
|
|
content_image_path, |
|
321
|
|
|
style_image_path, |
|
322
|
|
|
) |
|
323
|
|
|
# Create a thread to run the backend task |
|
324
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor: |
|
325
|
|
|
future = executor.submit(_run) |
|
326
|
|
|
|
|
327
|
|
|
|
|
328
|
|
|
# Function to execute run_nst in a separate thread |
|
329
|
|
|
# def start_nst_thread(): |
|
330
|
|
|
# with concurrent.futures.ThreadPoolExecutor() as executor: |
|
331
|
|
|
# future = executor.submit(run_nst) |
|
332
|
|
|
# You can optionally add callbacks for handling the results |
|
333
|
|
|
|
|
334
|
|
|
# Threaded Run Computations |
|
335
|
|
|
# def start_nst_thread(): |
|
336
|
|
|
# import tensorflow as tf |
|
337
|
|
|
|
|
338
|
|
|
# # Create a new TensorFlow graph and session in the new thread |
|
339
|
|
|
# # with tf.Graph().as_default(), tf.Session() as sess: |
|
340
|
|
|
# # Define TensorFlow operations |
|
341
|
|
|
# # ... |
|
342
|
|
|
|
|
343
|
|
|
# # Enqueue TensorFlow operations to be executed in the new thread |
|
344
|
|
|
# coord = tf.train.Coordinator() |
|
345
|
|
|
# enqueue_thread = tf.train.QueueRunner(tf.train.string_input_producer(["dummy_data"])) |
|
346
|
|
|
# threads = enqueue_thread.create_threads(sess, coord=coord, start=True) |
|
347
|
|
|
|
|
348
|
|
|
# # Start the TensorFlow operations within the new thread |
|
349
|
|
|
# run_nst() |
|
350
|
|
|
|
|
351
|
|
|
def start_nst_thread(): |
|
352
|
|
|
nst_thread = threading.Thread(target=run_nst) |
|
353
|
|
|
nst_thread.daemon = True # Set as a daemon thread to exit when the main program exits |
|
354
|
|
|
nst_thread.start() |
|
355
|
|
|
|
|
356
|
|
|
# BUTTON -> Run NST Algorithm on press |
|
357
|
|
|
# run_nst_btn = tk.Button( |
|
358
|
|
|
# root, |
|
359
|
|
|
# text="Run NST Algorithm", |
|
360
|
|
|
# command=start_nst_thread, # Start the thread when the button is pressed |
|
361
|
|
|
# ) |
|
362
|
|
|
run_nst_btn = tk.Button( |
|
363
|
|
|
root, |
|
364
|
|
|
text="Run NST Algorithm", |
|
365
|
|
|
command=start_nst_thread, |
|
366
|
|
|
) |
|
367
|
|
|
|
|
368
|
|
|
run_nst_btn.pack(pady=5) # Add padding |
|
369
|
|
|
|
|
370
|
|
|
|
|
371
|
|
|
# Add a label to display the selected file |
|
372
|
|
|
# file_label = tk.Label(root, text="", wraplength=300) # Wrap text for better display |
|
373
|
|
|
# file_label.pack(pady=10) # Add padding |
|
374
|
|
|
|
|
375
|
|
|
|
|
376
|
|
|
# style_image_pane = tk.Label(root, width=200, height=200, bg="white") |
|
377
|
|
|
# style_image_pane.pack() |
|
378
|
|
|
|
|
379
|
|
|
root.mainloop() |
|
380
|
|
|
|