|
1
|
|
|
from attr import define |
|
2
|
|
|
from .utils.notification import Observer |
|
3
|
|
|
from typing import Callable |
|
4
|
|
|
import numpy.typing as npt |
|
5
|
|
|
import numpy as np |
|
6
|
|
|
import os |
|
7
|
|
|
|
|
8
|
|
|
|
|
9
|
|
|
@define |
|
10
|
|
|
class StylingObserver(Observer): |
|
11
|
|
|
save_on_disk_callback: Callable[[str, npt.NDArray], None] |
|
12
|
|
|
"""Store a snapshot of the image under construction. |
|
13
|
|
|
|
|
14
|
|
|
Args: |
|
15
|
|
|
Observer ([type]): [description] |
|
16
|
|
|
""" |
|
17
|
|
|
def update(self, *args, **kwargs): |
|
18
|
|
|
output_dir = args[0].state.output_path |
|
19
|
|
|
content_image_path = args[0].state.content_image_path |
|
20
|
|
|
style_image_path = args[0].state.style_image_path |
|
21
|
|
|
itererations_completed = args[0].state.metrics['iterations'] |
|
22
|
|
|
matrix = args[0].state.matrix |
|
23
|
|
|
|
|
24
|
|
|
output_file_path = os.path.join( |
|
25
|
|
|
output_dir, |
|
26
|
|
|
f'{os.path.basename(content_image_path)}+{os.path.basename(style_image_path)}-{itererations_completed}.png' |
|
27
|
|
|
) |
|
28
|
|
|
|
|
29
|
|
|
if matrix.ndim == 4 and matrix.shape[0] == 1: |
|
30
|
|
|
# we have shape of form (1, Width, Height, Number_of_Color_Channels) |
|
31
|
|
|
matrix = np.reshape(matrix, tuple(matrix.shape[1:])) |
|
32
|
|
|
|
|
33
|
|
|
if str(matrix.dtype) != 'uint8': |
|
34
|
|
|
matrix = self._convert_to_uint8(matrix) |
|
35
|
|
|
|
|
36
|
|
|
self.save_on_disk_callback(matrix, output_file_path, format='png') |
|
37
|
|
|
|
|
38
|
|
|
bit_2_data_type = {8: np.uint8} |
|
39
|
|
|
|
|
40
|
|
|
def _convert_to_uint8(self, im): |
|
41
|
|
|
bitdepth = 8 |
|
42
|
|
|
out_type = type(self).bit_2_data_type[bitdepth] |
|
43
|
|
|
mi = np.nanmin(im) |
|
44
|
|
|
ma = np.nanmax(im) |
|
45
|
|
|
if not np.isfinite(mi): |
|
46
|
|
|
raise ValueError("Minimum image value is not finite") |
|
47
|
|
|
if not np.isfinite(ma): |
|
48
|
|
|
raise ValueError("Maximum image value is not finite") |
|
49
|
|
|
if ma == mi: |
|
50
|
|
|
return im.astype(out_type) |
|
51
|
|
|
|
|
52
|
|
|
# Make float copy before we scale |
|
53
|
|
|
im = im.astype("float64") |
|
54
|
|
|
# Scale the values between 0 and 1 then multiply by the max value |
|
55
|
|
|
im = (im - mi) / (ma - mi) * (np.power(2.0, bitdepth) - 1) + 0.499999999 |
|
56
|
|
|
assert np.nanmin(im) >= 0 |
|
57
|
|
|
assert np.nanmax(im) < np.power(2.0, bitdepth) |
|
58
|
|
|
im = im.astype(out_type) |
|
59
|
|
|
return im |
|
60
|
|
|
|