|
1
|
|
|
import pytest |
|
2
|
|
|
|
|
3
|
|
|
|
|
4
|
|
|
@pytest.fixture |
|
5
|
|
|
def graph_builder(): |
|
6
|
|
|
from artificial_artwork.style_model.graph_builder import GraphBuilder |
|
7
|
|
|
return GraphBuilder() |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
def test_building_layers(graph_builder): |
|
11
|
|
|
import tensorflow as tf |
|
12
|
|
|
tf.compat.v1.reset_default_graph() |
|
13
|
|
|
tf.compat.v1.enable_eager_execution() |
|
14
|
|
|
import numpy as np |
|
15
|
|
|
height = 2 |
|
16
|
|
|
width = 6 |
|
17
|
|
|
channels = 2 |
|
18
|
|
|
expected_input_shape = (1, height, width, channels) |
|
19
|
|
|
|
|
20
|
|
|
graph_builder.input(type('ImageSpecs', (), { |
|
21
|
|
|
'width': width, |
|
22
|
|
|
'height': height, |
|
23
|
|
|
'color_channels': channels |
|
24
|
|
|
})()) |
|
25
|
|
|
# assert previous layer is the 'input' layer we just added/created |
|
26
|
|
|
assert tuple(graph_builder._prev_layer.shape) == expected_input_shape |
|
27
|
|
|
assert (graph_builder._prev_layer.numpy() - graph_builder.graph['input'].numpy()).all() == 0 |
|
28
|
|
|
assert graph_builder.graph['input'].numpy().all() == 0 |
|
29
|
|
|
|
|
30
|
|
|
# create relu(convolution) layer |
|
31
|
|
|
W = np.array(np.random.rand(*expected_input_shape[1:], channels), dtype=np.float32) |
|
32
|
|
|
|
|
33
|
|
|
b_weight = 6.0 |
|
34
|
|
|
b = np.array([b_weight], dtype=np.float32) |
|
35
|
|
|
graph_builder.relu_conv_2d('convo1', (W, b)) |
|
36
|
|
|
|
|
37
|
|
|
# assert the previous layer is the relu(convolution) layer we just added |
|
38
|
|
|
assert tuple(graph_builder._prev_layer.shape) == expected_input_shape |
|
39
|
|
|
assert (graph_builder.graph['convo1'].numpy() - graph_builder._prev_layer.numpy()).all() == 0 |
|
40
|
|
|
# We expect that the tensor values are equal to the weight because the algorithm initializes input with tf.zeros |
|
41
|
|
|
assert (graph_builder.graph['convo1'].numpy() - b).all() == 0 |
|
42
|
|
|
|
|
43
|
|
|
|
|
44
|
|
|
# create Average Pooling layer |
|
45
|
|
|
layer_id = 'avgpool1' |
|
46
|
|
|
graph_builder.avg_pool(layer_id) |
|
47
|
|
|
|
|
48
|
|
|
# assert previous layer is the layer we just added/created |
|
49
|
|
|
expected_avg_pool_shape = (1, 1, 3, 2) |
|
50
|
|
|
expected_avg_output = np.array( |
|
51
|
|
|
[[[[b_weight, b_weight, b_weight], |
|
52
|
|
|
[b_weight, b_weight, b_weight], |
|
53
|
|
|
[b_weight, b_weight, b_weight] |
|
54
|
|
|
]]] |
|
55
|
|
|
,dtype=np.float32) |
|
56
|
|
|
assert graph_builder.graph[layer_id].numpy().shape == expected_avg_pool_shape |
|
57
|
|
|
assert (graph_builder.graph[layer_id].numpy() - graph_builder._prev_layer.numpy()).all() == 0 |
|
58
|
|
|
assert (graph_builder.graph[layer_id].numpy() - np.array([b_weight])).all() == 0 |
|
59
|
|
|
|
|
60
|
|
|
for i in range(2): |
|
61
|
|
|
for c in range(2): |
|
62
|
|
|
assert graph_builder._prev_layer[0][0][i][c] == graph_builder.graph[layer_id][0][0][i][c] |
|
63
|
|
|
assert graph_builder._prev_layer[0][0][i][c] == expected_avg_output[0][0][i][c] |
|
64
|
|
|
|