|
1
|
|
|
# coding=utf-8 |
|
2
|
|
|
import pytest |
|
3
|
|
|
|
|
4
|
|
|
from decision_engine.comparisons import GreaterThanOrEqual, Equal, \ |
|
5
|
|
|
LessThanOrEqual |
|
6
|
|
|
from decision_engine.engine import Engine |
|
7
|
|
|
from decision_engine.rules import SimpleComparisonRule, BooleanAndRule |
|
8
|
|
|
from decision_engine.sources import DictSource, FixedValueSource, \ |
|
9
|
|
|
PercentageSource |
|
10
|
|
|
|
|
11
|
|
|
|
|
12
|
|
|
def test_single_stupid_rule_engine(): |
|
13
|
|
|
hundred = FixedValueSource(100) |
|
14
|
|
|
five_thousand = FixedValueSource(5000) |
|
15
|
|
|
rule = SimpleComparisonRule(five_thousand, hundred, GreaterThanOrEqual()) |
|
16
|
|
|
engine = Engine([rule]) |
|
17
|
|
|
|
|
18
|
|
|
data = {} |
|
19
|
|
|
|
|
20
|
|
|
assert engine.decide(data) is True |
|
21
|
|
|
assert engine.__repr__() == f"Name: '{engine.name}' | " \ |
|
22
|
|
|
f"rules: {[r.name for r in engine.rules]}" |
|
23
|
|
|
|
|
24
|
|
|
|
|
25
|
|
|
@pytest.mark.parametrize("salary, expected", [ |
|
26
|
|
|
(100000, True), |
|
27
|
|
|
(10000, False) |
|
28
|
|
|
]) |
|
29
|
|
|
def test_single_rule_engine(salary, expected): |
|
30
|
|
|
salary_percentage = PercentageSource(0.75, DictSource('salary')) |
|
31
|
|
|
minimum_salary = FixedValueSource(50000) |
|
32
|
|
|
rule = SimpleComparisonRule(salary_percentage, minimum_salary, |
|
33
|
|
|
GreaterThanOrEqual()) |
|
34
|
|
|
engine = Engine([rule]) |
|
35
|
|
|
|
|
36
|
|
|
data = { |
|
37
|
|
|
'salary': salary |
|
38
|
|
|
} |
|
39
|
|
|
|
|
40
|
|
|
assert engine.decide(data) == expected |
|
41
|
|
|
|
|
42
|
|
|
|
|
43
|
|
|
@pytest.mark.parametrize("air_miles, land_miles, age, vip, expected", [ |
|
44
|
|
|
(5000, 1000, 37, 'yes', True), |
|
45
|
|
|
(1500, 1000, 37, 'yes', False), |
|
46
|
|
|
(5000, 5001, 37, 'yes', False), |
|
47
|
|
|
(5000, 1000, 16, 'yes', False), |
|
48
|
|
|
(5000, 1000, 70, 'yes', False), |
|
49
|
|
|
(5000, 1000, 37, 'no', False), |
|
50
|
|
|
(100, 50, 15, 'no', False) |
|
51
|
|
|
]) |
|
52
|
|
|
def test_multiple_rules_engine(air_miles, land_miles, age, vip, expected): |
|
53
|
|
|
air_miles_source = DictSource('air_miles') |
|
54
|
|
|
minimum_miles_source = FixedValueSource(3500) |
|
55
|
|
|
minimum_air_miles_rule = SimpleComparisonRule(air_miles_source, |
|
56
|
|
|
minimum_miles_source, |
|
57
|
|
|
GreaterThanOrEqual()) |
|
58
|
|
|
|
|
59
|
|
|
land_miles_source = DictSource('land_miles') |
|
60
|
|
|
less_land_than_air_miles_rule = SimpleComparisonRule(land_miles_source, |
|
61
|
|
|
air_miles_source, |
|
62
|
|
|
LessThanOrEqual()) |
|
63
|
|
|
|
|
64
|
|
|
air_miles_percentage = PercentageSource(0.05, air_miles_source) |
|
65
|
|
|
air_miles_percentage_rule = SimpleComparisonRule(land_miles_source, |
|
66
|
|
|
air_miles_percentage, |
|
67
|
|
|
GreaterThanOrEqual()) |
|
68
|
|
|
|
|
69
|
|
|
air_and_land_miles_rule = BooleanAndRule([minimum_air_miles_rule, |
|
70
|
|
|
less_land_than_air_miles_rule, |
|
71
|
|
|
air_miles_percentage_rule]) |
|
72
|
|
|
|
|
73
|
|
|
age_source = DictSource('age') |
|
74
|
|
|
minimum_age_source = FixedValueSource(21) |
|
75
|
|
|
minimum_age_rule = SimpleComparisonRule(age_source, minimum_age_source, |
|
76
|
|
|
GreaterThanOrEqual()) |
|
77
|
|
|
|
|
78
|
|
|
maximum_age_source = FixedValueSource(65) |
|
79
|
|
|
maximum_age_rule = SimpleComparisonRule(age_source, maximum_age_source, |
|
80
|
|
|
LessThanOrEqual()) |
|
81
|
|
|
|
|
82
|
|
|
vip_status_source = DictSource('vip') |
|
83
|
|
|
positive_vip_status = FixedValueSource('yes') |
|
84
|
|
|
vip_status_rule = SimpleComparisonRule(vip_status_source, |
|
85
|
|
|
positive_vip_status, |
|
86
|
|
|
Equal()) |
|
87
|
|
|
|
|
88
|
|
|
engine = Engine([ |
|
89
|
|
|
air_and_land_miles_rule, |
|
90
|
|
|
minimum_age_rule, |
|
91
|
|
|
maximum_age_rule, |
|
92
|
|
|
vip_status_rule |
|
93
|
|
|
]) |
|
94
|
|
|
|
|
95
|
|
|
data = { |
|
96
|
|
|
'air_miles': air_miles, |
|
97
|
|
|
'land_miles': land_miles, |
|
98
|
|
|
'age': age, |
|
99
|
|
|
'vip': vip |
|
100
|
|
|
} |
|
101
|
|
|
|
|
102
|
|
|
assert engine.decide(data) == expected |
|
103
|
|
|
|