1
|
|
|
"Free electron density model" |
2
|
|
|
import os |
3
|
|
|
from functools import partial |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
from astropy.table import Table |
7
|
|
|
from numpy import cos |
8
|
|
|
from numpy import cosh |
9
|
|
|
from numpy import exp |
10
|
|
|
from numpy import pi |
11
|
|
|
from numpy import sqrt |
12
|
|
|
from numpy import tan |
13
|
|
|
from scipy.integrate import cumtrapz |
14
|
|
|
from scipy.integrate import quad |
15
|
|
|
|
16
|
|
|
from .utils import ClassOperation |
17
|
|
|
from .utils import galactic_to_galactocentric |
18
|
|
|
from .utils import lzproperty |
19
|
|
|
from .utils import rotation |
20
|
|
|
|
21
|
|
|
# import astropy.units as us |
22
|
|
|
# from astropy.coordinates import SkyCoord |
23
|
|
|
|
24
|
|
|
# Configuration |
25
|
|
|
# TODO: use to config file |
26
|
|
|
# input parameters for large-scale components of NE2001 30 June '02 |
27
|
|
|
# flags = {'wg1': 1, |
28
|
|
|
# 'wg2': 1, |
29
|
|
|
# 'wga': 1, |
30
|
|
|
# 'wggc': 1, |
31
|
|
|
# 'wglism': 1, |
32
|
|
|
# 'wgcN': 1, |
33
|
|
|
# 'wgvN': 1} |
34
|
|
|
|
35
|
|
|
# solar_params = {'Rsun': 8.3} |
36
|
|
|
|
37
|
|
|
# spiral_arms_params = {'na': 0.028, |
38
|
|
|
# 'ha': 0.23, |
39
|
|
|
# 'wa': 0.65, |
40
|
|
|
# 'Aa': 10.5, |
41
|
|
|
# 'Fa': 5, |
42
|
|
|
# 'narm1': 0.5, |
43
|
|
|
# 'narm2': 1.2, |
44
|
|
|
# 'narm3': 1.3, |
45
|
|
|
# 'narm4': 1.0, |
46
|
|
|
# 'narm5': 0.25, |
47
|
|
|
# 'warm1': 1.0, |
48
|
|
|
# 'warm2': 1.5, |
49
|
|
|
# 'warm3': 1.0, |
50
|
|
|
# 'warm4': 0.8, |
51
|
|
|
# 'warm5': 1.0, |
52
|
|
|
# 'harm1': 1.0, |
53
|
|
|
# 'harm2': 0.8, |
54
|
|
|
# 'harm3': 1.3, |
55
|
|
|
# 'harm4': 1.5, |
56
|
|
|
# 'harm5': 1.0, |
57
|
|
|
# 'farm1': 1.1, |
58
|
|
|
# 'farm2': 0.3, |
59
|
|
|
# 'farm3': 0.4, |
60
|
|
|
# 'farm4': 1.5, |
61
|
|
|
# 'farm5': 0.3} |
62
|
|
|
|
63
|
|
|
PARAMS = { |
64
|
|
|
'thick_disk': {'e_density': 0.033/0.97, |
65
|
|
|
'height': 0.97, |
66
|
|
|
'radius': 17.5, |
67
|
|
|
'F': 0.18}, |
68
|
|
|
|
69
|
|
|
'thin_disk': {'e_density': 0.08, |
70
|
|
|
'height': 0.15, |
71
|
|
|
'radius': 3.8, |
72
|
|
|
'F': 120}, |
73
|
|
|
|
74
|
|
|
'galactic_center': {'e_density': 10.0, |
75
|
|
|
'center': np.array([-0.01, 0.0, -0.020]), |
76
|
|
|
'radius': 0.145, |
77
|
|
|
'height': 0.026, |
78
|
|
|
'F': 0.6e5}, |
79
|
|
|
|
80
|
|
|
'ldr': {'ellipsoid': np.array([1.50, .750, .50]), |
81
|
|
|
'center': np.array([1.36, 8.06, 0.0]), |
82
|
|
|
'theta': -24.2*pi/180, |
83
|
|
|
'e_density': 0.012, |
84
|
|
|
'F': 0.1}, |
85
|
|
|
|
86
|
|
|
'lsb': {'ellipsoid': np.array([1.050, .4250, .3250]), |
87
|
|
|
'center': np.array([-0.75, 9.0, -0.05]), |
88
|
|
|
'theta': 139.*pi/180, |
89
|
|
|
'e_density': 0.016, |
90
|
|
|
'F': 0.01}, |
91
|
|
|
|
92
|
|
|
'lhb': {'cylinder': np.array([.0850, .1000, .330]), |
93
|
|
|
'center': np.array([0.01, 8.45, 0.17]), |
94
|
|
|
'theta': 15*pi/180, |
95
|
|
|
'e_density': 0.005, |
96
|
|
|
'F': 0.01}, |
97
|
|
|
|
98
|
|
|
'loop_in': {'center': np.array([-0.045, 8.40, 0.07]), |
99
|
|
|
'radius': 0.120, |
100
|
|
|
'e_density': 0.0125, |
101
|
|
|
'F': 0.2}, |
102
|
|
|
|
103
|
|
|
'loop_out': {'center': np.array([-0.045, 8.40, 0.07]), |
104
|
|
|
'radius': 0.120 + 0.060, |
105
|
|
|
'e_density': 0.0125, |
106
|
|
|
'F': 0.01}} |
107
|
|
|
|
108
|
|
|
|
109
|
|
|
def thick_disk(xyz, r_sun, radius, height): |
110
|
|
|
""" |
111
|
|
|
Calculate the contribution of the thick disk to the free electron density |
112
|
|
|
at x, y, z = `xyz` |
113
|
|
|
""" |
114
|
|
|
r_ratio = sqrt(xyz[0]**2 + xyz[1]**2)/radius |
115
|
|
|
return (cos(r_ratio*pi/2)/cos(r_sun*pi/2/radius) / |
116
|
|
|
cosh(xyz[-1]/height)**2 * |
117
|
|
|
(r_ratio < 1)) |
118
|
|
|
|
119
|
|
|
|
120
|
|
|
def thin_disk(xyz, radius, height): |
121
|
|
|
""" |
122
|
|
|
Calculate the contribution of the thin disk to the free electron density |
123
|
|
|
at x, y, z = `xyz` |
124
|
|
|
""" |
125
|
|
|
r_ratio = sqrt(xyz[0]**2 + xyz[1]**2)/radius |
126
|
|
|
return (exp(-(1 - r_ratio)**2*radius**2/1.8**2) / |
127
|
|
|
cosh(xyz[-1]/height)**2) # Why 1.8? |
128
|
|
|
|
129
|
|
|
|
130
|
|
|
def gc(xyz, center, radius, height): |
131
|
|
|
""" |
132
|
|
|
Calculate the contribution of the Galactic center to the free |
133
|
|
|
electron density at x, y, z = `xyz` |
134
|
|
|
""" |
135
|
|
|
# Here I'm using the expression in the NE2001 code which is inconsistent |
136
|
|
|
# with Cordes and Lazio 2011 (0207156v3) (See Table 2) |
137
|
|
|
try: |
138
|
|
|
xyz = xyz - center |
139
|
|
|
except ValueError: |
140
|
|
|
xyz = xyz - center[:, None] |
141
|
|
|
|
142
|
|
|
r_ratio = sqrt(xyz[0]**2 + xyz[1]**2)/radius |
143
|
|
|
|
144
|
|
|
# ???? |
145
|
|
|
# Cordes and Lazio 2011 (0207156v3) (Table 2) |
146
|
|
|
# return ne_gc0*exp(-(r2d/rgc)**2 - (xyz[-1]/hgc)**2) |
147
|
|
|
# ???? |
148
|
|
|
|
149
|
|
|
# Constant ne (form NE2001 code) |
150
|
|
|
return (r_ratio**2 + (xyz[-1]/height)**2 < 1)*(r_ratio <= 1) |
151
|
|
|
|
152
|
|
|
|
153
|
|
|
class NEobject(ClassOperation): |
154
|
|
|
""" |
155
|
|
|
A general electron density object |
156
|
|
|
""" |
157
|
|
|
|
158
|
|
|
def __init__(self, func, **params): |
159
|
|
|
""" |
160
|
|
|
|
161
|
|
|
Arguments: |
162
|
|
|
- `xyz`: Location where the electron density is calculated |
163
|
|
|
- `func`: Electron density function |
164
|
|
|
- `**params`: Model parameter |
165
|
|
|
""" |
166
|
|
|
self._params = params |
167
|
|
|
self._fparam = params.pop('F') |
168
|
|
|
self._ne0 = params.pop('e_density') |
169
|
|
|
try: |
170
|
|
|
self._func = func(**params) |
171
|
|
|
except TypeError: |
172
|
|
|
self._func = partial(func, **params) |
173
|
|
|
self._params = params |
174
|
|
|
|
175
|
|
|
def DM(self, xyz, xyz_sun=np.array([0, 8.5, 0]), |
176
|
|
|
epsrel=1e-4, epsabs=1e-6, integrator=quad, step_size=0.001, |
177
|
|
|
*arg, **kwargs): |
178
|
|
|
""" |
179
|
|
|
Calculate the dispersion measure at location `xyz` |
180
|
|
|
""" |
181
|
|
|
xyz = xyz - xyz_sun |
182
|
|
|
|
183
|
|
|
dfinal = sqrt(np.sum(xyz**2, axis=0)) |
184
|
|
|
if integrator.__name__ is 'quad': |
185
|
|
|
return integrator(lambda x: self.ne(xyz_sun + x*xyz), |
186
|
|
|
0, 1, *arg, epsrel=epsrel, epsabs=epsabs, |
187
|
|
|
**kwargs)[0]*dfinal*1000 |
188
|
|
|
else: # Assuming sapling integrator |
189
|
|
|
nsamp = max(1000, dfinal/step_size) |
190
|
|
|
x = np.linspace(0, 1, nsamp) |
191
|
|
|
xyz = xyz_sun[:, None] + x*xyz[:, None] |
192
|
|
|
ne = self.ne(xyz) |
193
|
|
|
return integrator(ne)*dfinal*1000/nsamp |
194
|
|
|
|
195
|
|
|
def dist(self, l, b, DM, rsun=8.5, step_size=0.0001): |
196
|
|
|
""" |
197
|
|
|
Estimate the distance to an object with dispersion measure `DM` |
198
|
|
|
located at the direction `l ,b' |
199
|
|
|
""" |
200
|
|
|
|
201
|
|
|
# Initial guess |
202
|
|
|
dist0 = DM/PARAMS['thick_disk']['e_density']/1000 |
203
|
|
|
|
204
|
|
|
while self.DM(galactic_to_galactocentric(l, b, dist0, rsun)) < DM: |
205
|
|
|
dist0 *= 2 |
206
|
|
|
|
207
|
|
|
nsamp = max(1000, dist0/step_size) |
208
|
|
|
d_samp = np.linspace(0, dist0, nsamp) |
209
|
|
|
step_size = np.diff(d_samp[:2]) |
210
|
|
|
ne_samp = self.ne(galactic_to_galactocentric(l, b, d_samp, rsun)) |
211
|
|
|
d_samp = (d_samp[1:] + d_samp[:-1])/2 |
212
|
|
|
dm_samp = cumtrapz(ne_samp)*1000*step_size |
213
|
|
|
dist = np.interp(DM, dm_samp, d_samp) |
214
|
|
|
return dist |
215
|
|
|
|
216
|
|
|
def ne(self, *args): |
217
|
|
|
return self.electron_density(*args) |
218
|
|
|
|
219
|
|
|
def electron_density(self, xyz): |
220
|
|
|
"Electron density at the location `xyz`" |
221
|
|
|
return self._ne0*self._func(xyz) |
222
|
|
|
|
223
|
|
|
@property |
224
|
|
|
def F(self, xyz): |
225
|
|
|
"Fluctuation parameter" |
226
|
|
|
return (self.ne(xyz) > 0)*self._fparam |
227
|
|
|
|
228
|
|
|
|
229
|
|
|
class NEcombine(NEobject): |
230
|
|
|
""" |
231
|
|
|
""" |
232
|
|
|
|
233
|
|
|
def __init__(self, object1, object2): |
234
|
|
|
""" |
235
|
|
|
""" |
236
|
|
|
self._object1 = object1 |
237
|
|
|
self._object2 = object2 |
238
|
|
|
|
239
|
|
|
def electron_density(self, *args): |
240
|
|
|
ne1 = self._object1.ne(*args) |
241
|
|
|
ne2 = self._object2.ne(*args) |
242
|
|
|
return ne1 + ne2*(ne1 <= 0) |
243
|
|
|
|
244
|
|
|
|
245
|
|
|
class LocalISM(NEobject): |
246
|
|
|
""" |
247
|
|
|
Calculate the contribution of the local ISM |
248
|
|
|
to the free electron density at x, y, z = `xyz` |
249
|
|
|
""" |
250
|
|
|
|
251
|
|
|
def __init__(self, **params): |
252
|
|
|
""" |
253
|
|
|
""" |
254
|
|
|
self.ldr = NEobject(in_ellipsoid, **params['ldr']) |
255
|
|
|
self.lsb = NEobject(in_ellipsoid, **params['lsb']) |
256
|
|
|
self.lhb = NEobject(in_cylinder, **params['lhb']) |
257
|
|
|
self.loop_in = NEobject(in_half_sphere, **params['loop_in']) |
258
|
|
|
self.loop_out = NEobject(in_half_sphere, **params['loop_out']) |
259
|
|
|
|
260
|
|
|
self.loop = NEcombine(self.loop_in, self.loop_out) |
261
|
|
|
self._lism = NEcombine(self.lhb, |
262
|
|
|
NEcombine(self.loop, |
263
|
|
|
NEcombine(self.lsb, self.ldr))) |
264
|
|
|
|
265
|
|
|
def electron_density(self, xyz): |
266
|
|
|
""" |
267
|
|
|
Calculate the contribution of the local ISM to the free |
268
|
|
|
electron density at x, y, z = `xyz` |
269
|
|
|
""" |
270
|
|
|
return self._lism.ne(xyz) |
271
|
|
|
|
272
|
|
|
|
273
|
|
|
class Clumps(NEobject): |
274
|
|
|
""" |
275
|
|
|
""" |
276
|
|
|
|
277
|
|
|
def __init__(self, clumps_file=None): |
278
|
|
|
""" |
279
|
|
|
""" |
280
|
|
|
if not clumps_file: |
281
|
|
|
this_dir, _ = os.path.split(__file__) |
282
|
|
|
clumps_file = os.path.join(this_dir, "data", "neclumpN.NE2001.dat") |
283
|
|
|
self._data = Table.read(clumps_file, format='ascii') |
284
|
|
|
|
285
|
|
|
@lzproperty |
286
|
|
|
def use_clump(self): |
287
|
|
|
""" |
288
|
|
|
""" |
289
|
|
|
return np.array(self._data['flag']) == 0 |
290
|
|
|
|
291
|
|
|
@lzproperty |
292
|
|
|
def xyz(self): |
293
|
|
|
""" |
294
|
|
|
""" |
295
|
|
|
return self.get_xyz() |
296
|
|
|
|
297
|
|
|
@lzproperty |
298
|
|
|
def gl(self): |
299
|
|
|
""" |
300
|
|
|
Galactic longitude (deg) |
301
|
|
|
""" |
302
|
|
|
return np.array(self._data['l']) |
303
|
|
|
|
304
|
|
|
@lzproperty |
305
|
|
|
def gb(self): |
306
|
|
|
""" |
307
|
|
|
Galactic latitude (deg) |
308
|
|
|
""" |
309
|
|
|
return np.array(self._data['b']) |
310
|
|
|
|
311
|
|
|
@lzproperty |
312
|
|
|
def distance(self): |
313
|
|
|
""" |
314
|
|
|
Distance from the sun (kpc) |
315
|
|
|
""" |
316
|
|
|
return np.array(self._data['dc']) |
317
|
|
|
|
318
|
|
|
@lzproperty |
319
|
|
|
def radius2(self): |
320
|
|
|
""" |
321
|
|
|
Radius of the clump (kpc) |
322
|
|
|
""" |
323
|
|
|
return np.array(self._data['rc']**2) |
324
|
|
|
|
325
|
|
|
@lzproperty |
326
|
|
|
def ne0(self): |
327
|
|
|
""" |
328
|
|
|
Electron density of each clump (cm^{-3}) |
329
|
|
|
""" |
330
|
|
|
return np.array(self._data['nec']) |
331
|
|
|
|
332
|
|
|
@lzproperty |
333
|
|
|
def ne0_use(self): |
334
|
|
|
""" |
335
|
|
|
Electron density of each clump (cm^{-3}) |
336
|
|
|
""" |
337
|
|
|
return self.ne0*self.use_clump |
338
|
|
|
|
339
|
|
|
@lzproperty |
340
|
|
|
def edge(self): |
341
|
|
|
""" |
342
|
|
|
Clump edge |
343
|
|
|
0 => use exponential rolloff out to 5 clump radii |
344
|
|
|
1 => uniform and truncated at 1/e clump radius |
345
|
|
|
""" |
346
|
|
|
return np.array(self._data['edge']) |
347
|
|
|
|
348
|
|
|
def get_xyz(self, rsun=8.5): |
349
|
|
|
""" |
350
|
|
|
""" |
351
|
|
|
# xyz = SkyCoord(frame="galactic", l=self.gl, b=self.gb, |
352
|
|
|
# distance=self.distance, |
353
|
|
|
# z_sun = z_sun*us.kpc, |
354
|
|
|
# unit="deg, deg, kpc").galactocentric. |
355
|
|
|
# cartesian.xyz.value |
356
|
|
|
# return xyz |
357
|
|
|
return galactic_to_galactocentric(l=self.gl, b=self.gb, |
358
|
|
|
distance=self.distance, rsun=rsun) |
359
|
|
|
|
360
|
|
|
def clump_factor(self, xyz): |
361
|
|
|
""" |
362
|
|
|
Clump edge |
363
|
|
|
0 => use exponential rolloff out to 5 clump radii |
364
|
|
|
1 => uniform and truncated at 1/e clump radius |
365
|
|
|
""" |
366
|
|
|
if xyz.ndim == 1: |
367
|
|
|
return clump_factor(xyz, self.xyz, self.radius2, self.edge) |
368
|
|
|
else: |
369
|
|
|
xyz = xyz[:, :, None] - self.xyz[:, None, :] |
370
|
|
|
|
371
|
|
|
q2 = (np.sum(xyz**2, axis=0) / |
372
|
|
|
self.radius2) |
373
|
|
|
# NOTE: In the original NE2001 code q2 <= 5 is used instead of q <= 5. |
374
|
|
|
# TODO: check this |
375
|
|
|
q5 = (q2 <= 5)*(self.edge == 0) |
376
|
|
|
res = np.zeros_like(q2) |
377
|
|
|
res[(q2 <= 1)*(self.edge == 1)] = 1 |
378
|
|
|
res[q5] = exp(-q2[q5]) |
379
|
|
|
return res |
380
|
|
|
|
381
|
|
|
def electron_density(self, xyz): |
382
|
|
|
""" |
383
|
|
|
The contribution of the clumps to the free |
384
|
|
|
electron density at x, y, z = `xyz` |
385
|
|
|
""" |
386
|
|
|
return np.sum(self.clump_factor(xyz)*self.ne0_use, axis=-1) |
387
|
|
|
|
388
|
|
|
|
389
|
|
|
class Voids(NEobject): |
390
|
|
|
""" |
391
|
|
|
""" |
392
|
|
|
|
393
|
|
|
def __init__(self, voids_file=None): |
394
|
|
|
""" |
395
|
|
|
""" |
396
|
|
|
if not voids_file: |
397
|
|
|
this_dir, _ = os.path.split(__file__) |
398
|
|
|
voids_file = os.path.join(this_dir, "data", "nevoidN.NE2001.dat") |
399
|
|
|
self._data = Table.read(voids_file, format='ascii') |
400
|
|
|
|
401
|
|
|
@lzproperty |
402
|
|
|
def use_void(self): |
403
|
|
|
""" |
404
|
|
|
""" |
405
|
|
|
return np.array(self._data['flag'] == 0) |
406
|
|
|
|
407
|
|
|
@lzproperty |
408
|
|
|
def xyz(self): |
409
|
|
|
""" |
410
|
|
|
""" |
411
|
|
|
return self.get_xyz() |
412
|
|
|
|
413
|
|
|
@lzproperty |
414
|
|
|
def xyz_rot(self): |
415
|
|
|
""" |
416
|
|
|
""" |
417
|
|
|
return np.array([R.dot(xyzi) for R, |
418
|
|
|
xyzi in zip(self.rotation, self.xyz.T)]).T |
419
|
|
|
|
420
|
|
|
@lzproperty |
421
|
|
|
def gl(self): |
422
|
|
|
""" |
423
|
|
|
Galactic longitude (deg) |
424
|
|
|
""" |
425
|
|
|
return np.array(self._data['l']) |
426
|
|
|
|
427
|
|
|
@lzproperty |
428
|
|
|
def gb(self): |
429
|
|
|
""" |
430
|
|
|
Galactic latitude (deg) |
431
|
|
|
""" |
432
|
|
|
return np.array(self._data['b']) |
433
|
|
|
|
434
|
|
|
@lzproperty |
435
|
|
|
def distance(self): |
436
|
|
|
""" |
437
|
|
|
Distance from the sun (kpc) |
438
|
|
|
""" |
439
|
|
|
return np.array(self._data['dv']) |
440
|
|
|
|
441
|
|
|
@lzproperty |
442
|
|
|
def ellipsoid_abc(self): |
443
|
|
|
""" |
444
|
|
|
Void axis |
445
|
|
|
""" |
446
|
|
|
return np.array([self._data['aav'], |
447
|
|
|
self._data['bbv'], |
448
|
|
|
self._data['ccv']]) |
449
|
|
|
|
450
|
|
|
@lzproperty |
451
|
|
|
def rotation(self): |
452
|
|
|
""" |
453
|
|
|
Rotation and rescaling matrix |
454
|
|
|
""" |
455
|
|
|
return np.array([ |
456
|
|
|
(rotation(thetaz*pi/180, -1).dot( |
457
|
|
|
rotation(thetay*pi/180, 1)).T/abc).T |
458
|
|
|
for thetaz, thetay, abc |
459
|
|
|
in zip(self._data['thvz'], self._data['thvy'], |
460
|
|
|
self.ellipsoid_abc.T) |
461
|
|
|
]) |
462
|
|
|
|
463
|
|
|
@lzproperty |
464
|
|
|
def ne0(self): |
465
|
|
|
""" |
466
|
|
|
Electron density of each void (cm^{-3}) |
467
|
|
|
""" |
468
|
|
|
return np.array(self._data['nev']) |
469
|
|
|
|
470
|
|
|
@lzproperty |
471
|
|
|
def ne0_use(self): |
472
|
|
|
""" |
473
|
|
|
Electron density of each void (cm^{-3}) |
474
|
|
|
""" |
475
|
|
|
return self.ne0*self.use_void |
476
|
|
|
|
477
|
|
|
@lzproperty |
478
|
|
|
def edge(self): |
479
|
|
|
""" |
480
|
|
|
Void edge |
481
|
|
|
0 => use exponential rolloff out to 5 clump radii |
482
|
|
|
1 => uniform and truncated at 1/e clump radius |
483
|
|
|
""" |
484
|
|
|
return np.array(self._data['edge']) |
485
|
|
|
|
486
|
|
|
def get_xyz(self, rsun=8.5): |
487
|
|
|
""" |
488
|
|
|
""" |
489
|
|
|
# xyz = SkyCoord(frame="galactic", l=self.gl, b=self.gb, |
490
|
|
|
# distance=self.distance, |
491
|
|
|
# z_sun = z_sun*us.kpc, |
492
|
|
|
# unit="deg, deg, kpc").galactocentric. |
493
|
|
|
# cartesian.xyz.value |
494
|
|
|
# return xyz |
495
|
|
|
return galactic_to_galactocentric(l=self.gl, b=self.gb, |
496
|
|
|
distance=self.distance, rsun=rsun) |
497
|
|
|
|
498
|
|
|
def void_factor(self, xyz): |
499
|
|
|
""" |
500
|
|
|
Clump edge |
501
|
|
|
0 => use exponential rolloff out to 5 clump radii |
502
|
|
|
1 => uniform and truncated at 1/e clump radius |
503
|
|
|
""" |
504
|
|
|
xyz = (self.rotation.dot(xyz).T - self.xyz_rot).T |
505
|
|
|
|
506
|
|
|
q2 = np.sum(xyz**2, axis=1).T |
507
|
|
|
# NOTE: In the original NE2001 code q2 <= 5 is used instead of q <= 5. |
508
|
|
|
# TODO: check this |
509
|
|
|
return (q2 <= 1)*self.edge + (q2 <= 5)*(1-self.edge)*exp(-q2) |
510
|
|
|
|
511
|
|
|
def electron_density(self, xyz): |
512
|
|
|
""" |
513
|
|
|
The contribution of the clumps to the free |
514
|
|
|
electron density at x, y, z = `xyz` |
515
|
|
|
""" |
516
|
|
|
return np.sum(self.void_factor(xyz)*self.ne0_use, axis=-1) |
517
|
|
|
|
518
|
|
|
|
519
|
|
|
class ElectronDensity(NEobject): |
520
|
|
|
""" |
521
|
|
|
A class holding all the elements which contribute to free electron density |
522
|
|
|
""" |
523
|
|
|
|
524
|
|
|
def __init__(self, r_sun=8.5, clumps_file=None, voids_file=None, |
525
|
|
|
**params): |
526
|
|
|
""" |
527
|
|
|
""" |
528
|
|
|
self._params = params |
529
|
|
|
self._thick_disk = NEobject(thick_disk, r_sun=r_sun, |
530
|
|
|
**params['thick_disk']) |
531
|
|
|
self._thin_disk = NEobject(thin_disk, **params['thin_disk']) |
532
|
|
|
self._galactic_center = NEobject(gc, **params['galactic_center']) |
533
|
|
|
self._lism = LocalISM(**params) |
534
|
|
|
self._clumps = Clumps(clumps_file=clumps_file) |
535
|
|
|
self._voids = Voids(voids_file=voids_file) |
536
|
|
|
self._combined = (NEcombine(self._voids, |
537
|
|
|
NEcombine(self._lism, |
538
|
|
|
self._thick_disk + |
539
|
|
|
self._thin_disk + |
540
|
|
|
self._galactic_center)) + |
541
|
|
|
self._clumps) |
542
|
|
|
|
543
|
|
|
def electron_density(self, xyz): |
544
|
|
|
return self._combined.ne(xyz) |
545
|
|
|
|
546
|
|
|
|
547
|
|
|
class Ellipsoid(object): |
548
|
|
|
""" |
549
|
|
|
""" |
550
|
|
|
|
551
|
|
|
def __init__(self, center, ellipsoid, theta): |
552
|
|
|
""" |
553
|
|
|
""" |
554
|
|
|
self.center = center |
555
|
|
|
self.ellipsoid = ellipsoid |
556
|
|
|
self.theta = theta |
557
|
|
|
|
558
|
|
|
@lzproperty |
559
|
|
|
def transform(self): |
560
|
|
|
"Rotation and rescaling matrix" |
561
|
|
|
return (rotation(self.theta, -1).T/self.ellipsoid).T |
562
|
|
|
|
563
|
|
|
def in_ellipsoid(self, xyz): |
564
|
|
|
""" |
565
|
|
|
Test if xyz in the ellipsoid |
566
|
|
|
Theta in radians |
567
|
|
|
""" |
568
|
|
|
try: |
569
|
|
|
xyz = xyz - self.center |
570
|
|
|
except ValueError: |
571
|
|
|
xyz = xyz - self.center[:, None] |
572
|
|
|
|
573
|
|
|
xyz = self.transform.dot(xyz) |
574
|
|
|
|
575
|
|
|
return np.sum(xyz**2, axis=0) <= 1 |
576
|
|
|
|
577
|
|
|
|
578
|
|
|
def in_ellipsoid(center, ellipsoid, theta): |
579
|
|
|
return Ellipsoid(center, ellipsoid, theta).in_ellipsoid |
580
|
|
|
|
581
|
|
|
|
582
|
|
|
def in_cylinder(xyz, center, cylinder, theta): |
583
|
|
|
""" |
584
|
|
|
Test if xyz in the cylinder |
585
|
|
|
Theta in radians |
586
|
|
|
""" |
587
|
|
|
xyz0 = xyz.copy() |
588
|
|
|
try: |
589
|
|
|
xyz = xyz - center |
590
|
|
|
except ValueError: |
591
|
|
|
xyz = xyz - center[:, None] |
592
|
|
|
cylinder = np.vstack([cylinder]*xyz.shape[-1]).T |
593
|
|
|
xyz[1] -= tan(theta)*xyz0[-1] |
594
|
|
|
|
595
|
|
|
cylinder_p = cylinder.copy() |
596
|
|
|
z_c = (center[-1] - cylinder[-1]) |
597
|
|
|
izz = (xyz0[-1] <= 0)*(xyz0[-1] >= z_c) |
598
|
|
|
cylinder_p[0] = (0.001 + |
599
|
|
|
(cylinder[0] - 0.001) * |
600
|
|
|
(1 - xyz0[-1]/z_c))*izz + cylinder[0]*(~izz) |
601
|
|
|
xyz_p = xyz/cylinder_p |
602
|
|
|
|
603
|
|
|
return (xyz_p[0]**2 + xyz_p[1]**2 <= 1) * (xyz_p[-1]**2 <= 1) |
604
|
|
|
|
605
|
|
|
|
606
|
|
|
def in_half_sphere(xyz, center, radius): |
607
|
|
|
"Test if `xyz` in the sphere with radius r_sphere centerd at `xyz_center`" |
608
|
|
|
xyz0 = xyz.copy() |
609
|
|
|
try: |
610
|
|
|
xyz = xyz - center |
611
|
|
|
except ValueError: |
612
|
|
|
xyz = xyz - center[:, None] |
613
|
|
|
distance = sqrt(np.sum(xyz**2, axis=0)) |
614
|
|
|
return (distance <= radius)*(xyz0[-1] >= 0) |
615
|
|
|
|
616
|
|
|
|
617
|
|
|
def clump_factor(xyz, xyz0, r2, edge): |
618
|
|
|
""" |
619
|
|
|
Clump edge |
620
|
|
|
0 => use exponential rolloff out to 5 clump radii |
621
|
|
|
1 => uniform and truncated at 1/e clump radius |
622
|
|
|
""" |
623
|
|
|
xyz = (xyz - xyz0.T).T |
624
|
|
|
|
625
|
|
|
q2 = (xyz[0]**2 + xyz[1]**2 + xyz[2]**2) / r2 |
626
|
|
|
# NOTE: In the original NE2001 code q2 <= 5 is used instead of q <= 5. |
627
|
|
|
# TODO: check this |
628
|
|
|
q5 = (q2 <= 5)*(edge == 0) |
629
|
|
|
res = np.zeros_like(q2) |
630
|
|
|
res[(q2 <= 1)*(edge == 1)] = 1 |
631
|
|
|
res[q5] = exp(-q2[q5]) |
632
|
|
|
return res |
633
|
|
|
|