1
|
|
|
"Free electron density model" |
2
|
|
|
import os |
3
|
|
|
|
4
|
|
|
import numpy as np |
5
|
|
|
from astropy.table import Table |
6
|
|
|
from numpy import cos |
7
|
|
|
from numpy import cosh |
8
|
|
|
from numpy import exp |
9
|
|
|
from numpy import pi |
10
|
|
|
from numpy import sin |
11
|
|
|
from numpy import sqrt |
12
|
|
|
from numpy import tan |
13
|
|
|
from scipy.integrate import quad |
14
|
|
|
|
15
|
|
|
# import astropy.units as us |
16
|
|
|
# from astropy.coordinates import SkyCoord |
17
|
|
|
|
18
|
|
|
# Configuration |
19
|
|
|
# TODO: use to config file |
20
|
|
|
# input parameters for large-scale components of NE2001 30 June '02 |
21
|
|
|
# flags = {'wg1': 1, |
22
|
|
|
# 'wg2': 1, |
23
|
|
|
# 'wga': 1, |
24
|
|
|
# 'wggc': 1, |
25
|
|
|
# 'wglism': 1, |
26
|
|
|
# 'wgcN': 1, |
27
|
|
|
# 'wgvN': 1} |
28
|
|
|
|
29
|
|
|
# solar_params = {'Rsun': 8.3} |
30
|
|
|
|
31
|
|
|
# spiral_arms_params = {'na': 0.028, |
32
|
|
|
# 'ha': 0.23, |
33
|
|
|
# 'wa': 0.65, |
34
|
|
|
# 'Aa': 10.5, |
35
|
|
|
# 'Fa': 5, |
36
|
|
|
# 'narm1': 0.5, |
37
|
|
|
# 'narm2': 1.2, |
38
|
|
|
# 'narm3': 1.3, |
39
|
|
|
# 'narm4': 1.0, |
40
|
|
|
# 'narm5': 0.25, |
41
|
|
|
# 'warm1': 1.0, |
42
|
|
|
# 'warm2': 1.5, |
43
|
|
|
# 'warm3': 1.0, |
44
|
|
|
# 'warm4': 0.8, |
45
|
|
|
# 'warm5': 1.0, |
46
|
|
|
# 'harm1': 1.0, |
47
|
|
|
# 'harm2': 0.8, |
48
|
|
|
# 'harm3': 1.3, |
49
|
|
|
# 'harm4': 1.5, |
50
|
|
|
# 'harm5': 1.0, |
51
|
|
|
# 'farm1': 1.1, |
52
|
|
|
# 'farm2': 0.3, |
53
|
|
|
# 'farm3': 0.4, |
54
|
|
|
# 'farm4': 1.5, |
55
|
|
|
# 'farm5': 0.3} |
56
|
|
|
|
57
|
|
|
PARAMS = { |
58
|
|
|
'thick_disk': {'e_density': 0.033/0.97, |
59
|
|
|
'height': 0.97, |
60
|
|
|
'radius': 17.5, |
61
|
|
|
'F': 0.18}, |
62
|
|
|
|
63
|
|
|
'thin_disk': {'e_density': 0.08, |
64
|
|
|
'height': 0.15, |
65
|
|
|
'radius': 3.8, |
66
|
|
|
'F': 120}, |
67
|
|
|
|
68
|
|
|
'galactic_center': {'e_density': 10.0, |
69
|
|
|
'center': np.array([-0.01, 0.0, -0.020]), |
70
|
|
|
'radius': 0.145, |
71
|
|
|
'height': 0.026, |
72
|
|
|
'F': 0.6e5}, |
73
|
|
|
|
74
|
|
|
'ldr': {'ellipsoid': np.array([1.50, .750, .50]), |
75
|
|
|
'center': np.array([1.36, 8.06, 0.0]), |
76
|
|
|
'theta': -24.2*pi/180, |
77
|
|
|
'e_density': 0.012, |
78
|
|
|
'F': 0.1}, |
79
|
|
|
|
80
|
|
|
'lsb': {'ellipsoid': np.array([1.050, .4250, .3250]), |
81
|
|
|
'center': np.array([-0.75, 9.0, -0.05]), |
82
|
|
|
'theta': 139.*pi/180, |
83
|
|
|
'e_density': 0.016, |
84
|
|
|
'F': 0.01}, |
85
|
|
|
|
86
|
|
|
'lhb': {'cylinder': np.array([.0850, .1000, .330]), |
87
|
|
|
'center': np.array([0.01, 8.45, 0.17]), |
88
|
|
|
'theta': 15*pi/180, |
89
|
|
|
'e_density': 0.005, |
90
|
|
|
'F': 0.01}, |
91
|
|
|
|
92
|
|
|
'loop_in': {'center': np.array([-0.045, 8.40, 0.07]), |
93
|
|
|
'radius': 0.120, |
94
|
|
|
'e_density': 0.0125, |
95
|
|
|
'F': 0.2}, |
96
|
|
|
'loop_out': {'center': np.array([-0.045, 8.40, 0.07]), |
97
|
|
|
'radius': 0.120 + 0.060, |
98
|
|
|
'e_density': 0.0125, |
99
|
|
|
'F': 0.01}} |
100
|
|
|
|
101
|
|
|
|
102
|
|
|
def thick_disk(xyz, r_sun, radius, height): |
103
|
|
|
""" |
104
|
|
|
Calculate the contribution of the thick disk to the free electron density |
105
|
|
|
at x, y, z = `xyz` |
106
|
|
|
""" |
107
|
|
|
r_ratio = sqrt(xyz[0]**2 + xyz[1]**2)/radius |
108
|
|
|
return (cos(r_ratio*pi/2)/cos(r_sun*pi/2/radius) / |
109
|
|
|
cosh(xyz[-1]/height)**2 * |
110
|
|
|
(r_ratio < 1)) |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
def thin_disk(xyz, radius, height): |
114
|
|
|
""" |
115
|
|
|
Calculate the contribution of the thin disk to the free electron density |
116
|
|
|
at x, y, z = `xyz` |
117
|
|
|
""" |
118
|
|
|
r_ratio = sqrt(xyz[0]**2 + xyz[1]**2)/radius |
119
|
|
|
return (exp(-(1 - r_ratio)**2*radius**2/1.8**2) / |
120
|
|
|
cosh(xyz[-1]/height)**2) # Why 1.8? |
121
|
|
|
|
122
|
|
|
|
123
|
|
|
def gc(xyz, center, radius, height): |
124
|
|
|
""" |
125
|
|
|
Calculate the contribution of the Galactic center to the free |
126
|
|
|
electron density at x, y, z = `xyz` |
127
|
|
|
""" |
128
|
|
|
# Here I'm using the expression in the NE2001 code which is inconsistent |
129
|
|
|
# with Cordes and Lazio 2011 (0207156v3) (See Table 2) |
130
|
|
|
try: |
131
|
|
|
xyz = xyz - center |
132
|
|
|
except ValueError: |
133
|
|
|
xyz = xyz - center[:, None] |
134
|
|
|
|
135
|
|
|
r_ratio = sqrt(xyz[0]**2 + xyz[1]**2)/radius |
136
|
|
|
|
137
|
|
|
# ???? |
138
|
|
|
# Cordes and Lazio 2011 (0207156v3) (Table 2) |
139
|
|
|
# return ne_gc0*exp(-(r2d/rgc)**2 - (xyz[-1]/hgc)**2) |
140
|
|
|
# ???? |
141
|
|
|
|
142
|
|
|
# Constant ne (form NE2001 code) |
143
|
|
|
return (r_ratio**2 + (xyz[-1]/height)**2 < 1)*(r_ratio <= 1) |
144
|
|
|
|
145
|
|
|
|
146
|
|
|
class Class_Operation(object): |
147
|
|
|
""" |
148
|
|
|
Class Operation |
149
|
|
|
""" |
150
|
|
|
|
151
|
|
|
def __init__(self, operation, cls1, cls2): |
152
|
|
|
""" |
153
|
|
|
""" |
154
|
|
|
self.cls1 = cls1 |
155
|
|
|
self.cls2 = cls2 |
156
|
|
|
self._operation = operation |
157
|
|
|
|
158
|
|
|
def __getattr__(self, arg): |
159
|
|
|
return getattr(getattr(self.cls1, arg), |
160
|
|
|
self._operation)(getattr(self.cls2, arg)) |
161
|
|
|
|
162
|
|
|
|
163
|
|
|
class NEobject(object): |
164
|
|
|
""" |
165
|
|
|
A general electron density object |
166
|
|
|
""" |
167
|
|
|
|
168
|
|
|
def __init__(self, xyz, func, **params): |
169
|
|
|
""" |
170
|
|
|
|
171
|
|
|
Arguments: |
172
|
|
|
- `xyz`: Location where the electron density is calculated |
173
|
|
|
- `func`: Electron density function |
174
|
|
|
- `**params`: Model parameter |
175
|
|
|
""" |
176
|
|
|
self._xyz = xyz |
177
|
|
|
self._func = func |
178
|
|
|
self._fparam = params.pop('F') |
179
|
|
|
self._ne0 = params.pop('e_density') |
180
|
|
|
self._params = params |
181
|
|
|
|
182
|
|
|
def __add__(self, other): |
183
|
|
|
return Class_Operation('__add__', self, other) |
184
|
|
|
|
185
|
|
|
def __sub__(self, other): |
186
|
|
|
return Class_Operation('__sub_', self, other) |
187
|
|
|
|
188
|
|
|
def __mul__(self, other): |
189
|
|
|
return Class_Operation('__mul_', self, other) |
190
|
|
|
|
191
|
|
|
def DM(self, xyz_sun, filter=None): |
192
|
|
|
""" |
193
|
|
|
Calculate the dispersion measure at location `xyz` |
194
|
|
|
""" |
195
|
|
|
n = 1000 |
196
|
|
|
try: |
197
|
|
|
xyz = self.xyz - xyz_sun |
198
|
|
|
except ValueError: |
199
|
|
|
xyz = self.xyz - xyz_sun[:, None] |
200
|
|
|
|
201
|
|
|
dfinal = sqrt(np.sum(xyz**2, axis=0)) |
202
|
|
|
|
203
|
|
|
if filter is None: |
204
|
|
|
return quad(lambda x: self._func(xyz_sun + x*xyz, **self._params), |
205
|
|
|
0, 1)[0]*dfinal*1000*self._ne0 |
206
|
|
|
|
207
|
|
|
else: |
208
|
|
|
return (dfinal*1000*self._ne0 * |
209
|
|
|
sum([quad(lambda x: self._func(xyz_sun + x*xyz, |
210
|
|
|
**self._params), |
211
|
|
|
ii/n, (ii+1)/n)[0] for ii in range(n) |
212
|
|
|
if filter(xyz_sun + (2*ii + 1)*xyz/n/2)])) |
213
|
|
|
|
214
|
|
|
@property |
215
|
|
|
def xyz(self): |
216
|
|
|
"Location where the electron density will be calculated" |
217
|
|
|
return self._xyz |
218
|
|
|
|
219
|
|
|
@property |
220
|
|
|
def electron_density(self): |
221
|
|
|
"Electron density at the location `xyz`" |
222
|
|
|
try: |
223
|
|
|
return self._ne |
224
|
|
|
except AttributeError: |
225
|
|
|
self._ne = self._ne0*self._func(self.xyz, **self._params) |
226
|
|
|
return self._ne |
227
|
|
|
|
228
|
|
|
@property |
229
|
|
|
def wight(self): |
230
|
|
|
""" |
231
|
|
|
Is this object contributing to the electron density |
232
|
|
|
at the location `xyz` |
233
|
|
|
""" |
234
|
|
|
return self.electron_density > 0 |
235
|
|
|
|
236
|
|
|
@property |
237
|
|
|
def w(self): |
238
|
|
|
return self.wight |
239
|
|
|
|
240
|
|
|
@property |
241
|
|
|
def ne(self): |
242
|
|
|
return self.electron_density |
243
|
|
|
|
244
|
|
|
@wight.setter |
245
|
|
|
def wight(self, wight): |
246
|
|
|
""" |
247
|
|
|
Is this object contributing to the electron density |
248
|
|
|
at the location `xyz` |
249
|
|
|
""" |
250
|
|
|
self._ne = self.ne*wight |
251
|
|
|
|
252
|
|
|
@property |
253
|
|
|
def F(self): |
254
|
|
|
"Fluctuation parameter" |
255
|
|
|
return self.wight*self._fparam |
256
|
|
|
|
257
|
|
|
|
258
|
|
|
class LocalISM(object): |
259
|
|
|
""" |
260
|
|
|
Calculate the contribution of the local ISM |
261
|
|
|
to the free electron density at x, y, z = `xyz` |
262
|
|
|
""" |
263
|
|
|
|
264
|
|
|
def __init__(self, xyz, **params): |
265
|
|
|
""" |
266
|
|
|
""" |
267
|
|
|
self.xyz = xyz |
268
|
|
|
self.ldr = NEobject(xyz, in_ellipsoid, **params['ldr']) |
269
|
|
|
self.lsb = NEobject(xyz, in_ellipsoid, **params['lsb']) |
270
|
|
|
self.lhb = NEobject(xyz, in_cylinder, **params['lhb']) |
271
|
|
|
self.loop_in = NEobject(xyz, in_half_sphere, **params['loop_in']) |
272
|
|
|
self.loop_out = NEobject(xyz, in_half_sphere, **params['loop_out']) |
273
|
|
|
self.loop_out.wight = ~self.loop_in.w |
274
|
|
|
self.loop = self.loop_in + self.loop_out |
275
|
|
|
|
276
|
|
|
@property |
277
|
|
|
def electron_density(self): |
278
|
|
|
""" |
279
|
|
|
Calculate the contribution of the local ISM to the free |
280
|
|
|
electron density at x, y, z = `xyz` |
281
|
|
|
""" |
282
|
|
|
|
283
|
|
|
try: |
284
|
|
|
return self._nelism |
285
|
|
|
except AttributeError: |
286
|
|
|
self._nelism = (self.lhb.ne + |
287
|
|
|
(self.loop.ne + |
288
|
|
|
(self.lsb.ne + self.ldr.ne*~self.lsb.w) * |
289
|
|
|
~self.loop.w)*~self.lhb.w) |
290
|
|
|
|
291
|
|
|
return self._nelism |
292
|
|
|
|
293
|
|
|
@property |
294
|
|
|
def flism(self): |
295
|
|
|
try: |
296
|
|
|
return self._flism |
297
|
|
|
except AttributeError: |
298
|
|
|
self._flism = (self.lhb.F + ~self.lhb.w * |
299
|
|
|
(self.loop.F + ~self.loop.w * |
300
|
|
|
(self.lsb.F + self.ldr.F*~self.lsb.w))) |
301
|
|
|
|
302
|
|
|
return self._flism |
303
|
|
|
|
304
|
|
|
@property |
305
|
|
|
def wlism(self): |
306
|
|
|
# This should be equivalent to ne>0 |
307
|
|
|
# TODO: Check this! |
308
|
|
|
return np.maximum(self.loop.w, |
309
|
|
|
np.maximum(self.ldr.w, |
310
|
|
|
np.maximum(self.lsb.w, self.lhb.w))) |
311
|
|
|
|
312
|
|
|
|
313
|
|
|
def in_ellipsoid(xyz, center, ellipsoid, theta): |
314
|
|
|
""" |
315
|
|
|
Test if xyz in the ellipsoid |
316
|
|
|
Theta in radians |
317
|
|
|
""" |
318
|
|
|
try: |
319
|
|
|
xyz = xyz - center |
320
|
|
|
except ValueError: |
321
|
|
|
xyz = xyz - center[:, None] |
322
|
|
|
ellipsoid = ellipsoid[:, None] |
323
|
|
|
|
324
|
|
|
rot = rotation(theta, -1) |
325
|
|
|
xyz = rot.dot(xyz) |
326
|
|
|
|
327
|
|
|
xyz_p = xyz/ellipsoid |
328
|
|
|
|
329
|
|
|
return np.sum(xyz_p**2, axis=0) <= 1 |
330
|
|
|
|
331
|
|
|
|
332
|
|
|
def in_cylinder(xyz, center, cylinder, theta): |
333
|
|
|
""" |
334
|
|
|
Test if xyz in the cylinder |
335
|
|
|
Theta in radians |
336
|
|
|
""" |
337
|
|
|
try: |
338
|
|
|
xyz = xyz - center |
339
|
|
|
except ValueError: |
340
|
|
|
xyz = xyz - center[:, None] |
341
|
|
|
cylinder = np.vstack([cylinder]*xyz.shape[-1]).T |
342
|
|
|
xyz[2] -= tan(theta)*xyz[-1] |
343
|
|
|
|
344
|
|
|
cylinder_p = cylinder.copy() |
345
|
|
|
z_c = (center[-1] - cylinder[-1]) |
346
|
|
|
izz = (xyz[-1] <= 0)*(xyz[-1] <= z_c) |
347
|
|
|
cylinder_p[0] = (0.001 + |
348
|
|
|
(cylinder[0] - 0.001) * |
349
|
|
|
(1 - xyz[-1]/z_c))*izz + cylinder[0]*(~izz) |
350
|
|
|
|
351
|
|
|
xyz_p = xyz/cylinder_p |
352
|
|
|
|
353
|
|
|
return (xyz_p[0]**2 + xyz_p[1]**2 <= 1) * (xyz_p[-1]**2 <= 1) |
354
|
|
|
|
355
|
|
|
|
356
|
|
|
def in_half_sphere(xyz, center, radius): |
357
|
|
|
"Test if `xyz` in the sphere with radius r_sphere centerd at `xyz_center`" |
358
|
|
|
try: |
359
|
|
|
xyz = xyz - center |
360
|
|
|
except ValueError: |
361
|
|
|
xyz = xyz - center[:, None] |
362
|
|
|
distance = sqrt(np.sum(xyz**2, axis=0)) |
363
|
|
|
return (distance <= radius)*(xyz[-1] >= 0) |
364
|
|
|
|
365
|
|
|
|
366
|
|
|
class Clumps(object): |
367
|
|
|
""" |
368
|
|
|
""" |
369
|
|
|
|
370
|
|
|
def __init__(self, clumps_file=None): |
371
|
|
|
""" |
372
|
|
|
""" |
373
|
|
|
if not clumps_file: |
374
|
|
|
this_dir, _ = os.path.split(__file__) |
375
|
|
|
clumps_file = os.path.join(this_dir, "data", "neclumpN.NE2001.dat") |
376
|
|
|
self._data = Table.read(clumps_file, format='ascii') |
377
|
|
|
|
378
|
|
|
@property |
379
|
|
|
def use_clump(self): |
380
|
|
|
""" |
381
|
|
|
""" |
382
|
|
|
return self._data['flag'] == 0 |
383
|
|
|
|
384
|
|
|
@property |
385
|
|
|
def xyz(self): |
386
|
|
|
""" |
387
|
|
|
""" |
388
|
|
|
try: |
389
|
|
|
return self._xyz |
390
|
|
|
except AttributeError: |
391
|
|
|
self._xyz = self.get_xyz() |
392
|
|
|
return self._xyz |
393
|
|
|
|
394
|
|
|
@property |
395
|
|
|
def gl(self): |
396
|
|
|
""" |
397
|
|
|
Galactic longitude (deg) |
398
|
|
|
""" |
399
|
|
|
return self._data['l'] |
400
|
|
|
|
401
|
|
|
@property |
402
|
|
|
def gb(self): |
403
|
|
|
""" |
404
|
|
|
Galactic latitude (deg) |
405
|
|
|
""" |
406
|
|
|
return self._data['b'] |
407
|
|
|
|
408
|
|
|
@property |
409
|
|
|
def distance(self): |
410
|
|
|
""" |
411
|
|
|
Distance from the sun (kpc) |
412
|
|
|
""" |
413
|
|
|
return self._data['dc'] |
414
|
|
|
|
415
|
|
|
@property |
416
|
|
|
def radius(self): |
417
|
|
|
""" |
418
|
|
|
Radius of the clump (kpc) |
419
|
|
|
""" |
420
|
|
|
return self._data['rc'] |
421
|
|
|
|
422
|
|
|
@property |
423
|
|
|
def ne(self): |
424
|
|
|
""" |
425
|
|
|
Electron density of each clump (cm^{-3}) |
426
|
|
|
""" |
427
|
|
|
return self._data['nec'] |
428
|
|
|
|
429
|
|
|
@property |
430
|
|
|
def edge(self): |
431
|
|
|
""" |
432
|
|
|
Clump edge |
433
|
|
|
0 => use exponential rolloff out to 5 clump radii |
434
|
|
|
1 => uniform and truncated at 1/e clump radius |
435
|
|
|
""" |
436
|
|
|
return self._data['edge'] |
437
|
|
|
|
438
|
|
|
def get_xyz(self, rsun=8.5): |
439
|
|
|
""" |
440
|
|
|
""" |
441
|
|
|
# xyz = SkyCoord(frame="galactic", l=self.gl, b=self.gb, |
442
|
|
|
# distance=self.distance, |
443
|
|
|
# z_sun = z_sun*us.kpc, |
444
|
|
|
# unit="deg, deg, kpc").galactocentric. |
445
|
|
|
# cartesian.xyz.value |
446
|
|
|
# return xyz |
447
|
|
|
|
448
|
|
|
slc = sin(self.gl/180*pi) |
449
|
|
|
clc = cos(self.gl/180*pi) |
450
|
|
|
sbc = sin(self.gb/180*pi) |
451
|
|
|
cbc = cos(self.gb/180*pi) |
452
|
|
|
rgalc = self.distance*cbc |
453
|
|
|
xc = rgalc*slc |
454
|
|
|
yc = rsun-rgalc*clc |
455
|
|
|
zc = self.distance*sbc |
456
|
|
|
return np.array([xc, yc, zc]) |
457
|
|
|
|
458
|
|
|
def clump_factor(self, xyz): |
459
|
|
|
""" |
460
|
|
|
Clump edge |
461
|
|
|
0 => use exponential rolloff out to 5 clump radii |
462
|
|
|
1 => uniform and truncated at 1/e clump radius |
463
|
|
|
""" |
464
|
|
|
if xyz.ndim == 1: |
465
|
|
|
xyz = xyz[:, None] - self.xyz |
466
|
|
|
else: |
467
|
|
|
xyz = xyz[:, :, None] - self.xyz[:, None, :] |
468
|
|
|
|
469
|
|
|
q2 = (np.sum(xyz**2, axis=0) / |
470
|
|
|
self.radius**2) |
471
|
|
|
# NOTE: In the original NE2001 code q2 <= 5 is used instead of q <= 5. |
472
|
|
|
# TODO: check this |
473
|
|
|
return (q2 <= 1)*(self.edge == 1) + (q2 <= 5)*(self.edge == 0)*exp(-q2) |
474
|
|
|
|
475
|
|
|
def ne_clumps(self, xyz): |
476
|
|
|
""" |
477
|
|
|
The contribution of the clumps to the free |
478
|
|
|
electron density at x, y, z = `xyz` |
479
|
|
|
""" |
480
|
|
|
return np.sum(self.clump_factor(xyz)*self.ne*self.use_clump, axis=-1) |
481
|
|
|
|
482
|
|
|
|
483
|
|
|
class Voids(object): |
484
|
|
|
""" |
485
|
|
|
""" |
486
|
|
|
|
487
|
|
|
def __init__(self, voids_file=None): |
488
|
|
|
""" |
489
|
|
|
""" |
490
|
|
|
if not voids_file: |
491
|
|
|
this_dir, _ = os.path.split(__file__) |
492
|
|
|
voids_file = os.path.join(this_dir, "data", "nevoidN.NE2001.dat") |
493
|
|
|
self._data = Table.read(voids_file, format='ascii') |
494
|
|
|
|
495
|
|
|
@property |
496
|
|
|
def use_void(self): |
497
|
|
|
""" |
498
|
|
|
""" |
499
|
|
|
return self._data['flag'] == 0 |
500
|
|
|
|
501
|
|
|
@property |
502
|
|
|
def xyz(self): |
503
|
|
|
""" |
504
|
|
|
""" |
505
|
|
|
try: |
506
|
|
|
return self._xyz |
507
|
|
|
except AttributeError: |
508
|
|
|
self._xyz = self.get_xyz() |
509
|
|
|
return self._xyz |
510
|
|
|
|
511
|
|
|
@property |
512
|
|
|
def gl(self): |
513
|
|
|
""" |
514
|
|
|
Galactic longitude (deg) |
515
|
|
|
""" |
516
|
|
|
return self._data['l'] |
517
|
|
|
|
518
|
|
|
@property |
519
|
|
|
def gb(self): |
520
|
|
|
""" |
521
|
|
|
Galactic latitude (deg) |
522
|
|
|
""" |
523
|
|
|
return self._data['b'] |
524
|
|
|
|
525
|
|
|
@property |
526
|
|
|
def distance(self): |
527
|
|
|
""" |
528
|
|
|
Distance from the sun (kpc) |
529
|
|
|
""" |
530
|
|
|
return self._data['dv'] |
531
|
|
|
|
532
|
|
|
@property |
533
|
|
|
def ellipsoid_abc(self): |
534
|
|
|
""" |
535
|
|
|
Void axis |
536
|
|
|
""" |
537
|
|
|
return np.array([self._data['aav'], |
538
|
|
|
self._data['bbv'], |
539
|
|
|
self._data['ccv']]) |
540
|
|
|
|
541
|
|
|
@property |
542
|
|
|
def rotation_y(self): |
543
|
|
|
""" |
544
|
|
|
Rotation around the y axis |
545
|
|
|
""" |
546
|
|
|
return [rotation(theta*pi/180, 1) for theta in self._data['thvy']] |
547
|
|
|
|
548
|
|
|
@property |
549
|
|
|
def rotation_z(self): |
550
|
|
|
""" |
551
|
|
|
Rotation around the z axis |
552
|
|
|
""" |
553
|
|
|
return [rotation(theta*pi/180, -1) for theta in self._data['thvz']] |
554
|
|
|
|
555
|
|
|
@property |
556
|
|
|
def ne(self): |
557
|
|
|
""" |
558
|
|
|
Electron density of each void (cm^{-3}) |
559
|
|
|
""" |
560
|
|
|
return self._data['nev'] |
561
|
|
|
|
562
|
|
|
@property |
563
|
|
|
def edge(self): |
564
|
|
|
""" |
565
|
|
|
Void edge |
566
|
|
|
0 => use exponential rolloff out to 5 clump radii |
567
|
|
|
1 => uniform and truncated at 1/e clump radius |
568
|
|
|
""" |
569
|
|
|
return self._data['edge'] |
570
|
|
|
|
571
|
|
|
def get_xyz(self, rsun=8.5): |
572
|
|
|
""" |
573
|
|
|
""" |
574
|
|
|
# xyz = SkyCoord(frame="galactic", l=self.gl, b=self.gb, |
575
|
|
|
# distance=self.distance, |
576
|
|
|
# z_sun = z_sun*us.kpc, |
577
|
|
|
# unit="deg, deg, kpc").galactocentric. |
578
|
|
|
# cartesian.xyz.value |
579
|
|
|
# return xyz |
580
|
|
|
|
581
|
|
|
slc = sin(self.gl/180*pi) |
582
|
|
|
clc = cos(self.gl/180*pi) |
583
|
|
|
sbc = sin(self.gb/180*pi) |
584
|
|
|
cbc = cos(self.gb/180*pi) |
585
|
|
|
rgalc = self.distance*cbc |
586
|
|
|
xc = rgalc*slc |
587
|
|
|
yc = rsun-rgalc*clc |
588
|
|
|
zc = self.distance*sbc |
589
|
|
|
return np.array([xc, yc, zc]) |
590
|
|
|
|
591
|
|
|
def void_factor(self, xyz): |
592
|
|
|
""" |
593
|
|
|
Clump edge |
594
|
|
|
0 => use exponential rolloff out to 5 clump radii |
595
|
|
|
1 => uniform and truncated at 1/e clump radius |
596
|
|
|
""" |
597
|
|
|
if xyz.ndim == 1: |
598
|
|
|
xyz = xyz[:, None] - self.xyz |
599
|
|
|
ellipsoid_abc = self.ellipsoid_abc |
600
|
|
|
else: |
601
|
|
|
xyz = xyz[:, :, None] - self.xyz[:, None, :] |
602
|
|
|
ellipsoid_abc = self.ellipsoid_abc[:, None, :] |
603
|
|
|
|
604
|
|
|
xyz = np.array([Rz.dot(Ry).dot(XYZ.T).T |
605
|
|
|
for Rz, Ry, XYZ in |
606
|
|
|
zip(self.rotation_z, self.rotation_y, xyz.T)]).T |
607
|
|
|
|
608
|
|
|
q2 = np.sum(xyz**2 / ellipsoid_abc**2, axis=0) |
609
|
|
|
# NOTE: In the original NE2001 code q2 <= 5 is used instead of q <= 5. |
610
|
|
|
# TODO: check this |
611
|
|
|
return (q2 <= 1)*(self.edge == 1) + (q2 <= 5)*(self.edge == 0)*exp(-q2) |
612
|
|
|
|
613
|
|
|
def ne_voids(self, xyz): |
614
|
|
|
""" |
615
|
|
|
The contribution of the clumps to the free |
616
|
|
|
electron density at x, y, z = `xyz` |
617
|
|
|
""" |
618
|
|
|
return np.sum(self.void_factor(xyz)*self.ne*self.use_void, axis=-1) |
619
|
|
|
|
620
|
|
|
|
621
|
|
|
def rotation(theta, axis=-1): |
622
|
|
|
""" |
623
|
|
|
Return a rotation matrix around axis |
624
|
|
|
0:x, 1:y, 2:z |
625
|
|
|
""" |
626
|
|
|
ct = cos(theta) |
627
|
|
|
st = sin(theta) |
628
|
|
|
|
629
|
|
|
if axis in (0, -3): |
630
|
|
|
return np.array([[1, 0, 0], |
631
|
|
|
[0, ct, st], |
632
|
|
|
[0, -st, ct]]) |
633
|
|
|
|
634
|
|
|
if axis in (1, -2): |
635
|
|
|
return np.array([[ct, 0, st], |
636
|
|
|
[0, 1, 0], |
637
|
|
|
[-st, 0, ct]]) |
638
|
|
|
|
639
|
|
|
if axis in (2, -1): |
640
|
|
|
return np.array([[ct, st, 0], |
641
|
|
|
[-st, ct, 0], |
642
|
|
|
[0, 0, 1]]) |
643
|
|
|
|
644
|
|
|
|
645
|
|
|
def galactic_to_galactocentric(l, b, distance, rsun): |
646
|
|
|
slc = sin(l/180*pi) |
647
|
|
|
clc = cos(l/180*pi) |
648
|
|
|
sbc = sin(b/180*pi) |
649
|
|
|
cbc = cos(b/180*pi) |
650
|
|
|
rgalc = distance*cbc |
651
|
|
|
xc = rgalc*slc |
652
|
|
|
yc = rsun-rgalc*clc |
653
|
|
|
zc = distance*sbc |
654
|
|
|
return np.array([xc, yc, zc]) |
655
|
|
|
|