1
|
|
|
"Free electron density model" |
2
|
|
|
from __future__ import division |
3
|
|
|
|
4
|
|
|
import os |
5
|
|
|
from builtins import super |
6
|
|
|
from functools import partial |
7
|
|
|
|
8
|
|
|
import numpy as np |
9
|
|
|
from astropy import units as u |
10
|
|
|
from astropy.table import Table |
11
|
|
|
from numpy import cos |
12
|
|
|
from numpy import cosh |
13
|
|
|
from numpy import exp |
14
|
|
|
from numpy import pi |
15
|
|
|
from numpy import sqrt |
16
|
|
|
from numpy import tan |
17
|
|
|
from scipy.integrate import cumtrapz |
18
|
|
|
from scipy.integrate import quad |
19
|
|
|
|
20
|
|
|
from . import ne_io |
21
|
|
|
from .spiral_arms import ne_spiral_arm |
22
|
|
|
from .utils import galactic_to_galactocentric |
23
|
|
|
from .utils import lzproperty |
24
|
|
|
from .utils import matmul |
25
|
|
|
from .utils import parse_DM |
26
|
|
|
from .utils import parse_lbd |
27
|
|
|
from .utils import rad2d2 |
28
|
|
|
from .utils import rad3d2 |
29
|
|
|
from .utils import rotation |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
# Units |
33
|
|
|
DM_unit = u.pc / u.cm**3 |
34
|
|
|
d_unit = u.kpc |
35
|
|
|
|
36
|
|
|
# Sun |
37
|
|
|
XYZ_SUN = np.array([0, 8.5, 0]) |
38
|
|
|
RSUN = sqrt(rad2d2(XYZ_SUN)) |
39
|
|
|
|
40
|
|
|
|
41
|
|
|
def set_xyz_sun(xyz_sun): |
42
|
|
|
global XYZ_SUN |
43
|
|
|
global RSUN |
44
|
|
|
|
45
|
|
|
XYZ_SUN = xyz_sun |
46
|
|
|
RSUN = sqrt(rad2d2(XYZ_SUN)) |
47
|
|
|
|
48
|
|
|
|
49
|
|
|
def thick_disk(xyz, radius, height): |
50
|
|
|
""" Calculate the contribution of the thick disk to the free electron density |
51
|
|
|
at x, y, z = `xyz` |
52
|
|
|
Parameters |
53
|
|
|
---------- |
54
|
|
|
xyz |
55
|
|
|
radius |
56
|
|
|
height |
57
|
|
|
|
58
|
|
|
Returns |
59
|
|
|
------- |
60
|
|
|
dens : ndarray |
61
|
|
|
Density values |
62
|
|
|
|
63
|
|
|
""" |
64
|
|
|
r_ratio = sqrt(rad2d2(xyz))/radius |
65
|
|
|
dens = (cos(r_ratio*pi/2)/cos(RSUN*pi/2/radius) / |
66
|
|
|
cosh(xyz[-1]/height)**2 * |
67
|
|
|
(r_ratio < 1)) |
68
|
|
|
# Return |
69
|
|
|
return dens |
70
|
|
|
|
71
|
|
|
|
72
|
|
|
def thin_disk(xyz, radius, height): |
73
|
|
|
""" |
74
|
|
|
Calculate the contribution of the thin disk to the free electron density |
75
|
|
|
at x, y, z = `xyz` |
76
|
|
|
""" |
77
|
|
|
rad2 = sqrt(rad2d2(xyz)) |
78
|
|
|
dens = np.zeros_like(rad2) |
79
|
|
|
# Avoid floating point |
80
|
|
|
zeros = np.any([np.abs(radius-rad2) > 20., np.abs(xyz[-1]) > 40], axis=0) |
81
|
|
|
ok = ~zeros |
82
|
|
|
dens[ok] = (exp(-(radius - rad2[ok])**2/1.8**2) / |
83
|
|
|
cosh(xyz[-1][ok]/height)**2) # Why 1.8? |
84
|
|
|
return dens |
85
|
|
|
|
86
|
|
|
|
87
|
|
|
def gc(xyz, center, radius, height): |
88
|
|
|
""" |
89
|
|
|
Calculate the contribution of the Galactic center to the free |
90
|
|
|
electron density at x, y, z = `xyz` |
91
|
|
|
""" |
92
|
|
|
# Here I'm using the expression in the NE2001 code which is inconsistent |
93
|
|
|
# with Cordes and Lazio 2011 (0207156v3) (See Table 2) |
94
|
|
|
try: |
95
|
|
|
xyz = xyz - center |
96
|
|
|
except ValueError: |
97
|
|
|
xyz = xyz - center[:, None] |
98
|
|
|
|
99
|
|
|
r_ratio2 = rad2d2(xyz)/radius**2 |
100
|
|
|
|
101
|
|
|
# ???? |
102
|
|
|
# Cordes and Lazio 2011 (0207156v3) (Table 2) |
103
|
|
|
# return ne_gc0*exp(-(r2d/rgc)**2 - (xyz[-1]/hgc)**2) |
104
|
|
|
# ???? |
105
|
|
|
|
106
|
|
|
# Constant ne (form NE2001 code) |
107
|
|
|
return (r_ratio2 + (xyz[-1]/height)**2 < 1)*(r_ratio2 <= 1) |
108
|
|
|
|
109
|
|
|
|
110
|
|
|
class NEobject(object): |
111
|
|
|
""" |
112
|
|
|
A general electron density object |
113
|
|
|
""" |
114
|
|
|
|
115
|
|
|
def __init__(self, func, **params): |
116
|
|
|
""" |
117
|
|
|
|
118
|
|
|
Arguments: |
119
|
|
|
- `xyz`: Location where the electron density is calculated |
120
|
|
|
- `func`: Electron density function |
121
|
|
|
- `**params`: Model parameter |
122
|
|
|
""" |
123
|
|
|
try: |
124
|
|
|
self._fparam = params.pop('F') |
125
|
|
|
except KeyError: |
126
|
|
|
self._fparam = 1 |
127
|
|
|
try: |
128
|
|
|
self._ne0 = params.pop('e_density') |
129
|
|
|
except KeyError: |
130
|
|
|
self._ne0 = 1 |
131
|
|
|
try: |
132
|
|
|
self._func = func(**params) |
133
|
|
|
except TypeError: |
134
|
|
|
self._func = partial(func, **params) |
135
|
|
|
self._params = params |
136
|
|
|
|
137
|
|
|
def __add__(self, other): |
138
|
|
|
return Add(self, other) |
139
|
|
|
|
140
|
|
|
def __or__(self, other): |
141
|
|
|
return OR(self, other) |
142
|
|
|
|
143
|
|
|
def DM(self, l, b, d, |
144
|
|
|
epsrel=1e-4, epsabs=1e-6, integrator=quad, step_size=0.001, |
145
|
|
|
*arg, **kwargs): |
146
|
|
|
""" Calculate the dispersion measure towards direction l,b |
147
|
|
|
|
148
|
|
|
Parameters |
149
|
|
|
---------- |
150
|
|
|
l : float or Angle |
151
|
|
|
Galactic longitude; assumed deg if unitless |
152
|
|
|
b : float |
153
|
|
|
Galactic latitude; assumed deg if unitless |
154
|
|
|
d : float or Quantity |
155
|
|
|
Distance to source; assumed kpc if unitless |
156
|
|
|
epsrel : float, optional |
157
|
|
|
epsabs : float, optional |
158
|
|
|
integrator : method |
159
|
|
|
step_size : float, optional |
160
|
|
|
|
161
|
|
|
Returns |
162
|
|
|
------- |
163
|
|
|
DM : Quantity |
164
|
|
|
Dispersion Measure with units pc cm**-3 |
165
|
|
|
|
166
|
|
|
""" |
167
|
|
|
# Convert to floats |
168
|
|
|
l, b, d = parse_lbd(l, b, d) |
169
|
|
|
# |
170
|
|
|
xyz = galactic_to_galactocentric(l, b, d, [0, 0, 0]) |
171
|
|
|
|
172
|
|
|
dfinal = sqrt(rad3d2(xyz)) |
173
|
|
|
if integrator.__name__ is 'quad': |
174
|
|
|
return integrator(lambda x: self.ne(XYZ_SUN + x*xyz), |
175
|
|
|
0, 1, *arg, epsrel=epsrel, epsabs=epsabs, |
176
|
|
|
**kwargs)[0]*dfinal*1000 * DM_unit |
177
|
|
|
else: # Assuming sapling integrator |
178
|
|
|
nsamp = max(1000, dfinal/step_size) |
179
|
|
|
x = np.linspace(0, 1, nsamp + 1) |
180
|
|
|
xyz = galactic_to_galactocentric(l, b, x*dfinal, XYZ_SUN) |
181
|
|
|
ne = self.ne(xyz) |
182
|
|
|
return integrator(ne)*dfinal*1000*x[1] * DM_unit |
183
|
|
|
|
184
|
|
|
def dist(self, l, b, DM, step_size=0.001): |
185
|
|
|
""" Estimate the distance to an object with dispersion measure `DM` |
186
|
|
|
Located at the direction `l ,b' |
187
|
|
|
|
188
|
|
|
Parameters |
189
|
|
|
---------- |
190
|
|
|
l : float or Angle |
191
|
|
|
Galactic longitude; assumed deg if unitless |
192
|
|
|
b : float |
193
|
|
|
Galactic latitude; assumed deg if unitless |
194
|
|
|
DM : float or Quantity |
195
|
|
|
Dispersion Measure; assumed pc cm**^-3 if unitless |
196
|
|
|
step_size |
197
|
|
|
|
198
|
|
|
Returns |
199
|
|
|
------- |
200
|
|
|
|
201
|
|
|
""" |
202
|
|
|
# Parse |
203
|
|
|
DM = parse_DM(DM) |
204
|
|
|
|
205
|
|
|
# Initial guess |
206
|
|
|
dist0 = DM/self.params['thick_disk']['e_density']/1000 |
207
|
|
|
|
208
|
|
|
while self.DM(l, b, dist0).value < DM: |
209
|
|
|
dist0 *= 2 |
210
|
|
|
|
211
|
|
|
nsamp = max(1000, dist0/step_size) |
212
|
|
|
d_samp = np.linspace(0, dist0, nsamp + 1) |
213
|
|
|
ne_samp = self.ne(galactic_to_galactocentric(l, b, d_samp, XYZ_SUN)) |
214
|
|
|
dm_samp = cumtrapz(ne_samp, dx=d_samp[1])*1000 |
215
|
|
|
return np.interp(DM, dm_samp, d_samp[1:]) * d_unit |
216
|
|
|
|
217
|
|
|
def ne(self, xyz): |
218
|
|
|
"Electron density at the location `xyz`" |
219
|
|
|
return self.electron_density(xyz) |
220
|
|
|
|
221
|
|
|
def electron_density(self, xyz): |
222
|
|
|
"Electron density at the location `xyz`" |
223
|
|
|
return self._ne0*self._func(xyz) |
224
|
|
|
|
225
|
|
|
|
226
|
|
|
class OR(NEobject): |
227
|
|
|
""" |
228
|
|
|
Return A or B where A and B are instance of |
229
|
|
|
and the combined electron density is ne_A |
230
|
|
|
for all ne_A > 0 and ne_B otherwise. |
231
|
|
|
""" |
232
|
|
|
|
233
|
|
|
def __init__(self, object1, object2): |
234
|
|
|
""" |
235
|
|
|
""" |
236
|
|
|
self._object1 = object1 |
237
|
|
|
self._object2 = object2 |
238
|
|
|
|
239
|
|
|
def electron_density(self, *args): |
240
|
|
|
ne1 = self._object1.ne(*args) |
241
|
|
|
ne2 = self._object2.ne(*args) |
242
|
|
|
return ne1 + ne2*(ne1 <= 0) |
243
|
|
|
|
244
|
|
|
|
245
|
|
|
class Add(NEobject): |
246
|
|
|
""" |
247
|
|
|
Return A + B where A and B are instance of |
248
|
|
|
and the combined electron density is ne_A + ne_B. |
249
|
|
|
""" |
250
|
|
|
|
251
|
|
|
def __init__(self, object1, object2): |
252
|
|
|
""" |
253
|
|
|
""" |
254
|
|
|
self._object1 = object1 |
255
|
|
|
self._object2 = object2 |
256
|
|
|
|
257
|
|
|
def electron_density(self, *args): |
258
|
|
|
ne1 = self._object1.ne(*args) |
259
|
|
|
ne2 = self._object2.ne(*args) |
260
|
|
|
return ne1 + ne2 |
261
|
|
|
|
262
|
|
|
|
263
|
|
|
class LocalISM(NEobject): |
264
|
|
|
""" |
265
|
|
|
Calculate the contribution of the local ISM |
266
|
|
|
to the free electron density at x, y, z = `xyz` |
267
|
|
|
""" |
268
|
|
|
|
269
|
|
|
def __init__(self, **params): |
270
|
|
|
""" |
271
|
|
|
""" |
272
|
|
|
self.ldr = NEobject(in_ellipsoid, **params['ldr']) |
273
|
|
|
self.lsb = NEobject(in_ellipsoid, **params['lsb']) |
274
|
|
|
self.lhb = NEobject(in_cylinder, **params['lhb']) |
275
|
|
|
self.loop_in = NEobject(in_half_sphere, **params['loop_in']) |
276
|
|
|
self.loop_out = NEobject(in_half_sphere, **params['loop_out']) |
277
|
|
|
|
278
|
|
|
self.loop = self.loop_in | self.loop_out |
279
|
|
|
self._lism = (self.lhb | |
280
|
|
|
(self.loop | |
281
|
|
|
(self.lsb | self.ldr))) |
282
|
|
|
|
283
|
|
|
def electron_density(self, xyz): |
284
|
|
|
""" |
285
|
|
|
Calculate the contribution of the local ISM to the free |
286
|
|
|
electron density at x, y, z = `xyz` |
287
|
|
|
""" |
288
|
|
|
return self._lism.ne(xyz) |
289
|
|
|
|
290
|
|
|
|
291
|
|
|
class NEobjects(NEobject): |
292
|
|
|
""" |
293
|
|
|
Read objects from file |
294
|
|
|
""" |
295
|
|
|
|
296
|
|
|
def __init__(self, objects_file): |
297
|
|
|
""" |
298
|
|
|
""" |
299
|
|
|
self._data = Table.read(objects_file, format='ascii') |
300
|
|
|
|
301
|
|
|
@lzproperty |
302
|
|
|
def use_flag(self): |
303
|
|
|
""" |
304
|
|
|
A list of flags which determine which objects to use |
305
|
|
|
""" |
306
|
|
|
return np.array(self._data['flag']) == 0 |
307
|
|
|
|
308
|
|
|
@lzproperty |
309
|
|
|
def xyz(self): |
310
|
|
|
""" |
311
|
|
|
The locations of the objects in Galactocentric coordinates (kpc) |
312
|
|
|
""" |
313
|
|
|
return self.get_xyz() |
314
|
|
|
|
315
|
|
|
@property |
316
|
|
|
def data(self): |
317
|
|
|
return self._data[self.use_data] |
318
|
|
|
|
319
|
|
|
@lzproperty |
320
|
|
|
def gl(self): |
321
|
|
|
""" |
322
|
|
|
Galactic longitude (deg) |
323
|
|
|
""" |
324
|
|
|
return np.array(self._data['l']) |
325
|
|
|
|
326
|
|
|
@lzproperty |
327
|
|
|
def gb(self): |
328
|
|
|
""" |
329
|
|
|
Galactic latitude (deg) |
330
|
|
|
""" |
331
|
|
|
return np.array(self._data['b']) |
332
|
|
|
|
333
|
|
|
@lzproperty |
334
|
|
|
def distance(self): |
335
|
|
|
""" |
336
|
|
|
Distance from the sun (kpc) |
337
|
|
|
""" |
338
|
|
|
return np.array(self._data['dist']) |
339
|
|
|
|
340
|
|
|
@lzproperty |
341
|
|
|
def _radius2(self): |
342
|
|
|
""" |
343
|
|
|
Radius^2 of each object (kpc) |
344
|
|
|
""" |
345
|
|
|
return self.radius**2 |
346
|
|
|
|
347
|
|
|
@lzproperty |
348
|
|
|
def radius(self): |
349
|
|
|
""" |
350
|
|
|
Radius of each object (kpc) |
351
|
|
|
""" |
352
|
|
|
return np.array(self._data['radius']) |
353
|
|
|
|
354
|
|
|
@lzproperty |
355
|
|
|
def ne0(self): |
356
|
|
|
""" |
357
|
|
|
Electron density of each object (cm^{-3}) |
358
|
|
|
""" |
359
|
|
|
return np.array(self._data['ne']) |
360
|
|
|
|
361
|
|
|
@lzproperty |
362
|
|
|
def edge(self): |
363
|
|
|
""" |
364
|
|
|
The edge of the object |
365
|
|
|
0 => use exponential rolloff out to 5 clump radii |
366
|
|
|
1 => uniform and truncated at 1/e clump radius |
367
|
|
|
""" |
368
|
|
|
return np.array(self._data['edge']) |
369
|
|
|
|
370
|
|
|
def get_xyz(self): |
371
|
|
|
""" |
372
|
|
|
Get the location in Galactocentric coordinates |
373
|
|
|
""" |
374
|
|
|
# xyz = SkyCoord(frame="galactic", l=self.gl, b=self.gb, |
375
|
|
|
# distance=self.distance, |
376
|
|
|
# z_sun = z_sun*us.kpc, |
377
|
|
|
# unit="deg, deg, kpc").galactocentric. |
378
|
|
|
# cartesian.xyz.value |
379
|
|
|
# return xyz |
380
|
|
|
return galactic_to_galactocentric(l=self.gl, b=self.gb, |
381
|
|
|
distance=self.distance, |
382
|
|
|
xyz_sun=XYZ_SUN) |
383
|
|
|
|
384
|
|
|
def _factor(self, xyz): |
385
|
|
|
""" |
386
|
|
|
""" |
387
|
|
|
if xyz.ndim == 1: |
388
|
|
|
return object_factor(xyz, self.xyz, self._radius2, self.edge) |
389
|
|
|
else: |
390
|
|
|
xyz = xyz[:, :, None] - self.xyz[:, None, :] |
391
|
|
|
|
392
|
|
|
q2 = rad3d2(xyz) / self._radius2 |
393
|
|
|
# NOTE: In the original NE2001 code q2 <= 5 is used instead of q <= 5. |
394
|
|
|
# TODO: check this |
395
|
|
|
q5 = (q2 <= 5)*(self.edge == 0) |
396
|
|
|
res = np.zeros_like(q2) |
397
|
|
|
res[(q2 <= 1)*(self.edge == 1)] = 1 |
398
|
|
|
res[q5] = exp(-q2[q5]) |
399
|
|
|
return res |
400
|
|
|
|
401
|
|
|
def electron_density(self, xyz): |
402
|
|
|
""" |
403
|
|
|
The contribution of the object to the free |
404
|
|
|
electron density at x, y, z = `xyz` |
405
|
|
|
""" |
406
|
|
|
return (self._factor(xyz)*self.ne0).sum(axis=-1) |
407
|
|
|
|
408
|
|
|
|
409
|
|
|
class Clumps(NEobjects): |
410
|
|
|
""" |
411
|
|
|
""" |
412
|
|
|
|
413
|
|
|
def __init__(self, clumps_file=None): |
414
|
|
|
""" |
415
|
|
|
""" |
416
|
|
|
if not clumps_file: |
417
|
|
|
this_dir, _ = os.path.split(__file__) |
418
|
|
|
clumps_file = os.path.join(this_dir, "data", "neclumpN.NE2001.dat") |
419
|
|
|
super().__init__(clumps_file) |
420
|
|
|
|
421
|
|
|
|
422
|
|
|
class Voids(NEobjects): |
423
|
|
|
""" |
424
|
|
|
""" |
425
|
|
|
|
426
|
|
|
def __init__(self, voids_file=None): |
427
|
|
|
""" |
428
|
|
|
""" |
429
|
|
|
if not voids_file: |
430
|
|
|
this_dir, _ = os.path.split(__file__) |
431
|
|
|
voids_file = os.path.join(this_dir, "data", "nevoidN.NE2001.dat") |
432
|
|
|
super().__init__(voids_file) |
433
|
|
|
|
434
|
|
|
@lzproperty |
435
|
|
|
def xyz_rot(self): |
436
|
|
|
""" |
437
|
|
|
Rotated xyz |
438
|
|
|
""" |
439
|
|
|
return np.array([R.dot(xyzi) for R, |
440
|
|
|
xyzi in zip(self.rotation, self.xyz.T)]).T |
441
|
|
|
|
442
|
|
|
@lzproperty |
443
|
|
|
def ellipsoid_abc(self): |
444
|
|
|
""" |
445
|
|
|
Void axis |
446
|
|
|
""" |
447
|
|
|
return np.array([self._data['aa'], |
448
|
|
|
self._data['bb'], |
449
|
|
|
self._data['cc']]) |
450
|
|
|
|
451
|
|
|
@property |
452
|
|
|
def radius(self): |
453
|
|
|
""" |
454
|
|
|
""" |
455
|
|
|
return 1 |
456
|
|
|
|
457
|
|
|
@lzproperty |
458
|
|
|
def rotation(self): |
459
|
|
|
""" |
460
|
|
|
Rotation and rescaling matrix |
461
|
|
|
""" |
462
|
|
|
return np.array([ |
463
|
|
|
(rotation(thetaz*pi/180, -1).dot( |
464
|
|
|
rotation(thetay*pi/180, 1)).T/abc).T |
465
|
|
|
for thetaz, thetay, abc |
466
|
|
|
in zip(self._data['theta_z'], self._data['theta_y'], |
467
|
|
|
self.ellipsoid_abc.T) |
468
|
|
|
]) |
469
|
|
|
|
470
|
|
|
def _factor(self, xyz): |
471
|
|
|
""" |
472
|
|
|
Clump edge |
473
|
|
|
0 => use exponential rolloff out to 5 clump radii |
474
|
|
|
1 => uniform and truncated at 1/e clump radius |
475
|
|
|
""" |
476
|
|
|
if xyz.ndim == 1: |
477
|
|
|
return object_factor(matmul(self.rotation, xyz), |
478
|
|
|
self.xyz_rot, |
479
|
|
|
self._radius2, self.edge) |
480
|
|
|
else: |
481
|
|
|
xyz = (self.rotation.dot(xyz).T - self.xyz_rot).T |
482
|
|
|
|
483
|
|
|
q2 = np.sum(xyz**2, axis=1).T |
484
|
|
|
# NOTE: In the original NE2001 code q2 <= 5 |
485
|
|
|
# is used instead of q <= 5. |
486
|
|
|
# TODO: check thisif xyz.ndim == 1: |
487
|
|
|
return (q2 <= 1)*self.edge + (q2 <= 5)*(1-self.edge)*exp(-q2) |
488
|
|
|
|
489
|
|
|
|
490
|
|
|
class ElectronDensity(NEobject): |
491
|
|
|
""" |
492
|
|
|
A class holding all the elements which contribute to free electron density |
493
|
|
|
""" |
494
|
|
|
|
495
|
|
|
def __init__(self, clumps_file=None, voids_file=None, |
496
|
|
|
**params): |
497
|
|
|
""" |
498
|
|
|
""" |
499
|
|
|
self._params = ne_io.Params(**params) |
500
|
|
|
self._thick_disk = NEobject(thick_disk, **self.params['thick_disk']) |
501
|
|
|
self._thin_disk = NEobject(thin_disk, **self.params['thin_disk']) |
502
|
|
|
self._galactic_center = NEobject(gc, **self.params['galactic_center']) |
503
|
|
|
self._lism = LocalISM(**self.params) |
504
|
|
|
self._spiral_arms = NEobject(ne_spiral_arm, |
505
|
|
|
**self.params['spiral_arms']) |
506
|
|
|
self._clumps = Clumps(clumps_file=clumps_file) |
507
|
|
|
self._voids = Voids(voids_file=voids_file) |
508
|
|
|
self._combined = ((self._voids | |
509
|
|
|
(self._lism | |
510
|
|
|
(self._thick_disk + |
511
|
|
|
self._thin_disk + |
512
|
|
|
self._spiral_arms + |
513
|
|
|
self._galactic_center))) + |
514
|
|
|
self._clumps) |
515
|
|
|
|
516
|
|
|
def electron_density(self, xyz): |
517
|
|
|
return self._combined.ne(xyz) |
518
|
|
|
|
519
|
|
|
@property |
520
|
|
|
def params(self): |
521
|
|
|
return self._params |
522
|
|
|
|
523
|
|
|
|
524
|
|
|
class Ellipsoid(object): |
525
|
|
|
""" |
526
|
|
|
""" |
527
|
|
|
|
528
|
|
|
def __init__(self, center, ellipsoid, theta): |
529
|
|
|
""" |
530
|
|
|
""" |
531
|
|
|
self.center = center |
532
|
|
|
self.ellipsoid = ellipsoid |
533
|
|
|
self.theta = theta |
534
|
|
|
|
535
|
|
|
@lzproperty |
536
|
|
|
def transform(self): |
537
|
|
|
"Rotation and rescaling matrix" |
538
|
|
|
return (rotation(self.theta, -1).T/self.ellipsoid).T |
539
|
|
|
|
540
|
|
|
def in_ellipsoid(self, xyz): |
541
|
|
|
""" |
542
|
|
|
Test if xyz in the ellipsoid |
543
|
|
|
Theta in radians |
544
|
|
|
""" |
545
|
|
|
try: |
546
|
|
|
xyz = xyz - self.center |
547
|
|
|
except ValueError: |
548
|
|
|
xyz = xyz - self.center[:, None] |
549
|
|
|
|
550
|
|
|
xyz = matmul(self.transform, xyz) |
551
|
|
|
|
552
|
|
|
return rad3d2(xyz) <= 1 |
553
|
|
|
|
554
|
|
|
|
555
|
|
|
def in_ellipsoid(center, ellipsoid, theta): |
556
|
|
|
return Ellipsoid(center, ellipsoid, theta).in_ellipsoid |
557
|
|
|
|
558
|
|
|
|
559
|
|
|
def in_cylinder(xyz, center, cylinder, theta): |
560
|
|
|
""" |
561
|
|
|
Test if xyz in the cylinder |
562
|
|
|
Theta in radians |
563
|
|
|
""" |
564
|
|
|
xyz0 = xyz |
565
|
|
|
try: |
566
|
|
|
xyz = xyz - center |
567
|
|
|
except ValueError: |
568
|
|
|
xyz = xyz - center[:, None] |
569
|
|
|
cylinder = np.vstack([cylinder]*xyz.shape[-1]).T |
570
|
|
|
xyz[1] -= tan(theta)*xyz0[-1] |
571
|
|
|
cylinder_p = cylinder |
572
|
|
|
z_c = (center[-1] - cylinder[-1]) |
573
|
|
|
izz = (xyz0[-1] <= 0)*(xyz0[-1] >= z_c) |
574
|
|
|
cylinder_p[0] = (0.001 + |
575
|
|
|
(cylinder[0] - 0.001) * |
576
|
|
|
(1 - xyz0[-1]/z_c))*izz + cylinder[0]*(~izz) |
577
|
|
|
xyz_p = xyz/cylinder_p |
578
|
|
|
|
579
|
|
|
return (rad2d2(xyz_p) <= 1) * (xyz_p[-1]**2 <= 1) |
580
|
|
|
|
581
|
|
|
|
582
|
|
|
def in_half_sphere(xyz, center, radius): |
583
|
|
|
"Test if `xyz` in the sphere with radius r_sphere centerd at `xyz_center`" |
584
|
|
|
xyz0 = xyz |
585
|
|
|
try: |
586
|
|
|
xyz = xyz - center |
587
|
|
|
except ValueError: |
588
|
|
|
xyz = xyz - center[:, None] |
589
|
|
|
distance2 = rad3d2(xyz) |
590
|
|
|
return (distance2 <= radius**2)*(xyz0[-1] >= 0) |
591
|
|
|
|
592
|
|
|
|
593
|
|
|
def object_factor(xyz, xyz0, r2, edge): |
594
|
|
|
""" |
595
|
|
|
edge |
596
|
|
|
0 => use exponential rolloff out to 5 clump radii |
597
|
|
|
1 => uniform and truncated at 1/e clump radius |
598
|
|
|
""" |
599
|
|
|
xyz = (xyz - xyz0.T).T |
600
|
|
|
q2 = rad3d2(xyz) / r2 |
601
|
|
|
# NOTE: In the original NE2001 code q2 <= 5 is used instead of q <= 5. |
602
|
|
|
# TODO: check this |
603
|
|
|
q5 = (q2 <= 5)*(edge == 0) |
604
|
|
|
res = 1.0*(q2 <= 1)*(edge == 1) |
605
|
|
|
res[q5] = exp(-q2[q5]) |
606
|
|
|
return res |
607
|
|
|
|