1
|
|
|
import sys |
2
|
|
|
import os |
3
|
|
|
import math |
4
|
|
|
|
5
|
|
|
from timeit import default_timer as timer |
6
|
|
|
from multiprocessing import Process, Queue |
7
|
|
|
|
8
|
|
|
import numpy |
9
|
|
|
from scipy.spatial import KDTree |
10
|
|
|
|
11
|
|
|
import matplotlib.pyplot as plt |
12
|
|
|
from matplotlib.figure import Figure |
13
|
|
|
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas |
14
|
|
|
|
15
|
|
|
import geojson |
16
|
|
|
import geojsoncontour |
17
|
|
|
import togeojsontiles |
18
|
|
|
|
19
|
|
|
import nsmaps |
20
|
|
|
from nsmaps.logger import logger |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
TIPPECANOE_DIR = '/usr/local/bin/' |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
def dotproduct(v1, v2): |
27
|
|
|
return sum((a * b) for a, b in zip(v1, v2)) |
28
|
|
|
|
29
|
|
|
def length(v): |
30
|
|
|
return math.sqrt(dotproduct(v, v)) |
31
|
|
|
|
32
|
|
|
def angle(v1, v2): |
33
|
|
|
return math.acos(dotproduct(v1, v2) / (length(v1) * length(v2))) |
34
|
|
|
|
35
|
|
|
|
36
|
|
|
class ContourData(object): |
37
|
|
|
def __init__(self): |
38
|
|
|
self.Z = None |
39
|
|
|
self.index_begin = 0 |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
class ContourPlotConfig(object): |
43
|
|
|
def __init__(self): |
44
|
|
|
self.stepsize_deg = 0.005 |
45
|
|
|
self.n_processes = 4 |
46
|
|
|
self.cycle_speed_kmh = 18.0 |
47
|
|
|
self.n_nearest = 20 |
48
|
|
|
self.lon_start = 3.0 |
49
|
|
|
self.lat_start = 50.5 |
50
|
|
|
self.delta_deg = 6.5 |
51
|
|
|
self.lon_end = self.lon_start + self.delta_deg |
52
|
|
|
self.lat_end = self.lat_start + self.delta_deg / 2.0 |
53
|
|
|
self.min_angle_between_segments = 7 |
54
|
|
|
|
55
|
|
|
def print_bounding_box(self): |
56
|
|
|
print( |
57
|
|
|
'[[' + str(self.lon_start) + ',' + str(self.lat_start) + '],' \ |
58
|
|
|
'[' + str(self.lon_start) + ',' + str(self.lat_end) + '],' \ |
59
|
|
|
'[' + str(self.lon_end) + ',' + str(self.lat_end) + '],' \ |
60
|
|
|
'[' + str(self.lon_end) + ',' + str(self.lat_start) + '],' \ |
61
|
|
|
'[' + str(self.lon_start) + ',' + str(self.lat_start) + ']]' \ |
62
|
|
|
) |
63
|
|
|
|
64
|
|
|
|
65
|
|
|
class TestConfig(ContourPlotConfig): |
66
|
|
|
def __init__(self): |
67
|
|
|
super().__init__() |
68
|
|
|
self.stepsize_deg = 0.005 |
69
|
|
|
self.n_processes = 4 |
70
|
|
|
self.lon_start = 4.8 |
71
|
|
|
self.lat_start = 52.0 |
72
|
|
|
self.delta_deg = 1.0 |
73
|
|
|
self.lon_end = self.lon_start + self.delta_deg |
74
|
|
|
self.lat_end = self.lat_start + self.delta_deg / 2.0 |
75
|
|
|
self.min_angle_between_segments = 7 |
76
|
|
|
self.latrange = [] |
77
|
|
|
self.lonrange = [] |
78
|
|
|
self.Z = [[]] |
79
|
|
|
|
80
|
|
|
|
81
|
|
|
class Contour(object): |
82
|
|
|
def __init__(self, departure_station, stations, config, data_dir): |
83
|
|
|
self.departure_station = departure_station |
84
|
|
|
self.stations = stations |
85
|
|
|
self.config = config |
86
|
|
|
self.data_dir = data_dir |
87
|
|
|
|
88
|
|
|
def create_contour_data(self, filepath): |
89
|
|
|
if self.departure_station.has_travel_time_data(): |
90
|
|
|
self.stations.travel_times_from_json(self.departure_station.get_travel_time_filepath()) |
91
|
|
|
if os.path.exists(filepath): |
92
|
|
|
logger.error('Output file ' + filepath + ' already exists. Will not override.') |
93
|
|
|
return |
94
|
|
|
else: |
95
|
|
|
logger.error('Input file ' + self.departure_station.get_travel_time_filepath() + ' not found. Skipping station.') |
96
|
|
|
|
97
|
|
|
start = timer() |
98
|
|
|
numpy.set_printoptions(3, threshold=100, suppress=True) # .3f |
99
|
|
|
|
100
|
|
|
altitude = 0.0 |
101
|
|
|
self.lonrange = numpy.arange(self.config.lon_start, self.config.lon_end, self.config.stepsize_deg) |
102
|
|
|
self.latrange = numpy.arange(self.config.lat_start, self.config.lat_end, self.config.stepsize_deg / 2.0) |
103
|
|
|
self.Z = numpy.zeros((int(self.lonrange.shape[0]), int(self.latrange.shape[0]))) |
104
|
|
|
gps = nsmaps.utilgeo.GPS() |
105
|
|
|
|
106
|
|
|
positions = [] |
107
|
|
|
for station in self.stations: |
108
|
|
|
x, y, z = gps.lla2ecef([station.get_lat(), station.get_lon(), altitude]) |
109
|
|
|
positions.append([x, y, z]) |
110
|
|
|
|
111
|
|
|
logger.info('starting spatial interpolation') |
112
|
|
|
|
113
|
|
|
# tree to find nearest neighbors |
114
|
|
|
tree = KDTree(positions) |
115
|
|
|
|
116
|
|
|
queue = Queue() |
117
|
|
|
processes = [] |
118
|
|
|
if self.config.n_nearest > len(self.stations): |
119
|
|
|
self.config.n_nearest = len(self.stations) |
120
|
|
|
for i in range(0, self.config.n_processes): |
121
|
|
|
begin = i * len(self.latrange)/self.config.n_processes |
122
|
|
|
end = (i+1)*len(self.latrange)/self.config.n_processes |
123
|
|
|
latrange_part = self.latrange[begin:end] |
124
|
|
|
process = Process(target=self.interpolate_travel_time, args=(queue, i, self.stations.stations, tree, gps, latrange_part, |
125
|
|
|
self.lonrange, altitude, self.config.n_nearest, self.config.cycle_speed_kmh)) |
126
|
|
|
processes.append(process) |
127
|
|
|
|
128
|
|
|
for process in processes: |
129
|
|
|
process.start() |
130
|
|
|
|
131
|
|
|
# get from the queue and append the values |
132
|
|
|
for i in range(0, self.config.n_processes): |
133
|
|
|
data = queue.get() |
134
|
|
|
index_begin = data.index_begin |
135
|
|
|
begin = int(index_begin*len(self.latrange)/self.config.n_processes) |
136
|
|
|
end = int((index_begin+1)*len(self.latrange)/self.config.n_processes) |
137
|
|
|
self.Z[0:][begin:end] = data.Z |
138
|
|
|
|
139
|
|
|
for process in processes: |
140
|
|
|
process.join() |
141
|
|
|
|
142
|
|
|
end = timer() |
143
|
|
|
logger.info('finished spatial interpolation in ' + str(end - start) + ' [sec]') |
144
|
|
|
|
145
|
|
|
# self.create_geojson(filepath, max_zoom, min_zoom, stroke_width) |
146
|
|
|
|
147
|
|
|
def create_geojson(self, filepath, min_zoom=0, max_zoom=12, stroke_width=1, n_contours=41): |
148
|
|
|
figure = Figure(frameon=False) |
149
|
|
|
FigureCanvas(figure) |
150
|
|
|
ax = figure.add_subplot(111) |
151
|
|
|
levels = numpy.linspace(0, 200, num=n_contours) |
152
|
|
|
# contours = plt.contourf(lonrange, latrange, Z, levels=levels, cmap=plt.cm.plasma) |
153
|
|
|
contours = ax.contour(self.lonrange, self.latrange, self.Z, levels=levels, cmap=plt.cm.jet, linewidths=3) |
154
|
|
|
# cbar = figure.colorbar(contours, format='%.1f') |
155
|
|
|
# plt.savefig('contour_example.png', dpi=150) |
156
|
|
|
ndigits = len(str(int(1.0 / self.config.stepsize_deg))) + 1 |
157
|
|
|
logger.info('converting contour to geojson file: ' + filepath) |
158
|
|
|
geojsoncontour.contour_to_geojson( |
159
|
|
|
contour=contours, |
160
|
|
|
geojson_filepath=filepath, |
161
|
|
|
contour_levels=levels, |
162
|
|
|
min_angle_deg=self.config.min_angle_between_segments, |
163
|
|
|
ndigits=ndigits, |
164
|
|
|
unit='min', |
165
|
|
|
stroke_width=stroke_width |
166
|
|
|
) |
167
|
|
|
with open(filepath, 'r') as jsonfile: |
168
|
|
|
feature_collection = geojson.load(jsonfile) |
169
|
|
|
for feature in feature_collection['features']: |
170
|
|
|
feature["tippecanoe"] = {"maxzoom": str(int(max_zoom)), "minzoom": str(int(min_zoom))} |
171
|
|
|
dump = geojson.dumps(feature_collection, sort_keys=True) |
172
|
|
|
with open(filepath, 'w') as fileout: |
173
|
|
|
fileout.write(dump) |
174
|
|
|
|
175
|
|
|
cbar = figure.colorbar(contours, format='%d', orientation='horizontal') |
176
|
|
|
cbar.set_label('Travel time [minutes]') |
177
|
|
|
# cbar.set_ticks(self.config.colorbar_ticks) |
178
|
|
|
ax.set_visible(False) |
179
|
|
|
figure.savefig( |
180
|
|
|
filepath.replace('.geojson', '') + "_colorbar.png", |
181
|
|
|
dpi=90, |
182
|
|
|
bbox_inches='tight', |
183
|
|
|
pad_inches=0, |
184
|
|
|
transparent=True, |
185
|
|
|
) |
186
|
|
|
|
187
|
|
|
def create_geojson_tiles(self, filepaths, tile_dir, min_zoom=0, max_zoom=12): |
188
|
|
|
bound_box_filepath = os.path.join(self.data_dir, 'bounding_box.geojson') |
189
|
|
|
assert os.path.exists(bound_box_filepath) |
190
|
|
|
filepaths.append(bound_box_filepath) |
191
|
|
|
togeojsontiles.geojson_to_mbtiles( |
192
|
|
|
filepaths=filepaths, |
193
|
|
|
tippecanoe_dir=TIPPECANOE_DIR, |
194
|
|
|
mbtiles_file='out.mbtiles', |
195
|
|
|
minzoom=min_zoom, |
196
|
|
|
maxzoom=max_zoom, |
197
|
|
|
full_detail=10, |
198
|
|
|
lower_detail=9, |
199
|
|
|
min_detail=7 |
200
|
|
|
) |
201
|
|
|
logger.info('converting mbtiles to geojson-tiles') |
202
|
|
|
togeojsontiles.mbtiles_to_geojsontiles( |
203
|
|
|
tippecanoe_dir=TIPPECANOE_DIR, |
204
|
|
|
tile_dir=tile_dir, |
205
|
|
|
mbtiles_file='out.mbtiles', |
206
|
|
|
) |
207
|
|
|
logger.info('DONE: create contour json tiles') |
208
|
|
|
|
209
|
|
|
@staticmethod |
210
|
|
|
def interpolate_travel_time(q, position, stations, kdtree, gps, latrange, lonrange, altitude, n_nearest, cycle_speed_kmh): |
211
|
|
|
# n_nearest: check N nearest stations as best start for cycle route |
212
|
|
|
logger.info('interpolate_travel_time') |
213
|
|
|
Z = numpy.zeros((int(latrange.shape[0]), int(lonrange.shape[0]))) |
214
|
|
|
for i, lat in enumerate(latrange): |
215
|
|
|
if i % (len(latrange) / 10) == 0: |
216
|
|
|
logger.debug(str(int(i / len(latrange) * 100)) + '%') |
217
|
|
|
|
218
|
|
|
for j, lon in enumerate(lonrange): |
219
|
|
|
x, y, z = gps.lla2ecef([lat, lon, altitude]) |
220
|
|
|
distances, indexes = kdtree.query([x, y, z], n_nearest) |
221
|
|
|
min_travel_time = sys.float_info.max |
222
|
|
|
for distance, index in zip(distances, indexes): |
223
|
|
|
if stations[index].travel_time_min is None: |
224
|
|
|
continue |
225
|
|
|
travel_time = stations[index].travel_time_min + distance / 1000.0 / cycle_speed_kmh * 60.0 |
226
|
|
|
if travel_time < min_travel_time: |
227
|
|
|
min_travel_time = travel_time |
228
|
|
|
Z[i][j] = min_travel_time |
229
|
|
|
data = ContourData() |
230
|
|
|
data.index_begin = position |
231
|
|
|
data.Z = Z |
232
|
|
|
q.put(data) |
233
|
|
|
logger.info('end interpolate_travel_time') |
234
|
|
|
return |
235
|
|
|
|
236
|
|
|
|
237
|
|
|
# def contour_to_json(contour, filename, contour_labels, min_angle=2, ndigits=5): |
238
|
|
|
# # min_angle: only create a new line segment if the angle is larger than this angle, to compress output |
239
|
|
|
# collections = contour.collections |
240
|
|
|
# with open(filename, 'w') as fileout: |
241
|
|
|
# total_points = 0 |
242
|
|
|
# total_points_original = 0 |
243
|
|
|
# collections_json = [] |
244
|
|
|
# contour_index = 0 |
245
|
|
|
# assert len(contour_labels) == len(collections) |
246
|
|
|
# for collection in collections: |
247
|
|
|
# paths = collection.get_paths() |
248
|
|
|
# color = collection.get_edgecolor() |
249
|
|
|
# paths_json = [] |
250
|
|
|
# for path in paths: |
251
|
|
|
# v = path.vertices |
252
|
|
|
# x = [] |
253
|
|
|
# y = [] |
254
|
|
|
# v1 = v[1] - v[0] |
255
|
|
|
# x.append(round(v[0][0], ndigits)) |
256
|
|
|
# y.append(round(v[0][1], ndigits)) |
257
|
|
|
# for i in range(1, len(v) - 2): |
258
|
|
|
# v2 = v[i + 1] - v[i - 1] |
259
|
|
|
# diff_angle = math.fabs(angle(v1, v2) * 180.0 / math.pi) |
260
|
|
|
# if diff_angle > min_angle: |
261
|
|
|
# x.append(round(v[i][0], ndigits)) |
262
|
|
|
# y.append(round(v[i][1], ndigits)) |
263
|
|
|
# v1 = v[i] - v[i - 1] |
264
|
|
|
# x.append(round(v[-1][0], ndigits)) |
265
|
|
|
# y.append(round(v[-1][1], ndigits)) |
266
|
|
|
# total_points += len(x) |
267
|
|
|
# total_points_original += len(v) |
268
|
|
|
# |
269
|
|
|
# # x = v[:,0].tolist() |
270
|
|
|
# # y = v[:,1].tolist() |
271
|
|
|
# paths_json.append({u"x": x, u"y": y, u"linecolor": color[0].tolist(), u"label": str(int(contour_labels[contour_index])) + ' min'}) |
272
|
|
|
# contour_index += 1 |
273
|
|
|
# |
274
|
|
|
# if paths_json: |
275
|
|
|
# collections_json.append({u"paths": paths_json}) |
276
|
|
|
# collections_json_f = {} |
277
|
|
|
# collections_json_f[u"contours"] = collections_json |
278
|
|
|
# fileout.write(json.dumps(collections_json_f, sort_keys=True)) # indent=2) |
279
|
|
|
# logger.info('total points: ' + str(total_points) + ', compression: ' + str(int((1.0 - total_points / total_points_original) * 100)) + '%') |
280
|
|
|
|