1
|
|
|
/* |
2
|
|
|
* |
3
|
|
|
* Copyright 2014-2019, Armenak Grigoryan, and individual contributors as indicated |
4
|
|
|
* by the @authors tag. See the copyright.txt in the distribution for a |
5
|
|
|
* full listing of individual contributors. |
6
|
|
|
* |
7
|
|
|
* This is free software; you can redistribute it and/or modify it |
8
|
|
|
* under the terms of the GNU Lesser General Public License as |
9
|
|
|
* published by the Free Software Foundation; either version 2.1 of |
10
|
|
|
* the License, or (at your option) any later version. |
11
|
|
|
* |
12
|
|
|
* This software is distributed in the hope that it will be useful, |
13
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
14
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15
|
|
|
* Lesser General Public License for more details. |
16
|
|
|
* |
17
|
|
|
*/ |
18
|
|
|
package com.strider.datadefender.discoverer; |
19
|
|
|
|
20
|
|
|
import com.strider.datadefender.DataDefenderException; |
21
|
|
|
import com.strider.datadefender.ModelDiscoveryConfig; |
22
|
|
|
import com.strider.datadefender.database.IDbFactory; |
23
|
|
|
import com.strider.datadefender.database.metadata.IMetaData; |
24
|
|
|
import com.strider.datadefender.database.metadata.TableMetaData; |
25
|
|
|
import com.strider.datadefender.database.metadata.TableMetaData.ColumnMetaData; |
26
|
|
|
import com.strider.datadefender.database.sqlbuilder.ISqlBuilder; |
27
|
|
|
import com.strider.datadefender.functions.Utils; |
28
|
|
|
import com.strider.datadefender.report.ReportUtil; |
29
|
|
|
import com.strider.datadefender.specialcase.SpecialCase; |
30
|
|
|
import com.strider.datadefender.utils.Score; |
31
|
|
|
|
32
|
|
|
import java.io.File; |
33
|
|
|
import java.io.IOException; |
34
|
|
|
import java.io.InputStream; |
35
|
|
|
import java.lang.reflect.InvocationTargetException; |
36
|
|
|
import java.lang.reflect.Method; |
37
|
|
|
import java.nio.charset.StandardCharsets; |
38
|
|
|
import java.sql.Blob; |
39
|
|
|
import java.sql.Clob; |
40
|
|
|
import java.sql.Date; |
41
|
|
|
import java.sql.ResultSet; |
42
|
|
|
import java.sql.SQLException; |
43
|
|
|
import java.sql.Statement; |
44
|
|
|
import java.sql.Time; |
45
|
|
|
import java.sql.Timestamp; |
46
|
|
|
import java.text.DateFormat; |
47
|
|
|
import java.text.ParseException; |
48
|
|
|
import java.text.SimpleDateFormat; |
49
|
|
|
import java.util.ArrayList; |
50
|
|
|
import java.util.List; |
51
|
|
|
import java.util.Locale; |
52
|
|
|
import java.util.Objects; |
53
|
|
|
import java.util.stream.Collectors; |
54
|
|
|
|
55
|
|
|
import me.tongfei.progressbar.ProgressBar; |
56
|
|
|
|
57
|
|
|
import org.apache.commons.collections4.CollectionUtils; |
58
|
|
|
import org.apache.commons.collections4.ListUtils; |
59
|
|
|
import org.apache.commons.io.IOUtils; |
60
|
|
|
import org.apache.commons.lang3.ClassUtils; |
61
|
|
|
import org.apache.commons.lang3.StringUtils; |
62
|
|
|
|
63
|
|
|
import opennlp.tools.util.Span; |
64
|
|
|
|
65
|
|
|
import lombok.extern.log4j.Log4j2; |
66
|
|
|
|
67
|
|
|
/** |
68
|
|
|
* |
69
|
|
|
* @author Armenak Grigoryan |
70
|
|
|
*/ |
71
|
|
|
@Log4j2 |
72
|
|
|
public class DatabaseDiscoverer extends Discoverer { |
73
|
|
|
|
74
|
|
|
protected final IDbFactory factory; |
75
|
|
|
|
76
|
|
|
public DatabaseDiscoverer(ModelDiscoveryConfig config, IDbFactory factory) throws IOException { |
77
|
|
|
super(config); |
78
|
|
|
this.factory = factory; |
79
|
|
|
} |
80
|
|
|
|
81
|
|
|
/** |
82
|
|
|
* Calls a function defined as an extension |
83
|
|
|
* @param function |
84
|
|
|
* @param data |
85
|
|
|
* @param text |
86
|
|
|
* @return |
87
|
|
|
* @throws SQLException |
88
|
|
|
* @throws NoSuchMethodException |
89
|
|
|
* @throws SecurityException |
90
|
|
|
* @throws IllegalAccessException |
91
|
|
|
* @throws IllegalArgumentException |
92
|
|
|
* @throws InvocationTargetException |
93
|
|
|
*/ |
94
|
|
|
private Object callExtension(final String function, final ColumnMetaData data, final String text) |
95
|
|
|
throws SQLException, NoSuchMethodException, SecurityException, IllegalAccessException, |
96
|
|
|
IllegalArgumentException, InvocationTargetException { |
97
|
|
|
|
98
|
|
|
if (StringUtils.isBlank(function)) { |
99
|
|
|
return null; |
100
|
|
|
} |
101
|
|
|
|
102
|
|
|
Object value = null; |
103
|
|
|
|
104
|
|
|
try { |
105
|
|
|
final String className = Utils.getClassName(function); |
106
|
|
|
final String methodName = Utils.getMethodName(function); |
107
|
|
|
final Method method = Class.forName(className).getDeclaredMethod( |
108
|
|
|
methodName, |
109
|
|
|
new Class[] { ColumnMetaData.class, String.class } |
110
|
|
|
); |
111
|
|
|
final SpecialCase instance = (SpecialCase) Class.forName(className).getConstructor().newInstance(); |
112
|
|
|
value = method.invoke(instance, data, text); |
113
|
|
|
|
114
|
|
|
} catch (InstantiationException | ClassNotFoundException ex) { |
115
|
|
|
log.error(ex.toString()); |
116
|
|
|
log.debug(ex.toString(), ex); |
117
|
|
|
} |
118
|
|
|
|
119
|
|
|
return value; |
120
|
|
|
} |
121
|
|
|
|
122
|
|
|
@SuppressWarnings("unchecked") |
123
|
|
|
public List<ColumnMetaData> discover() |
124
|
|
|
throws ParseException, |
125
|
|
|
DataDefenderException, |
126
|
|
|
IOException, |
127
|
|
|
SQLException { |
128
|
|
|
|
129
|
|
|
List<ColumnMatch> finalList = new ArrayList<>(); |
130
|
|
|
|
131
|
|
|
try (ProgressBar pb = new ProgressBar( |
132
|
|
|
"Discovering by model...", |
133
|
|
|
CollectionUtils.size(config.getModels()) + CollectionUtils.size(config.getFileModels()) |
134
|
|
|
)) { |
135
|
|
|
for (final String sm : CollectionUtils.emptyIfNull(config.getModels())) { |
136
|
|
|
log.info("********************************"); |
137
|
|
|
log.info("Processing model " + sm); |
138
|
|
|
log.info("********************************"); |
139
|
|
|
pb.setExtraMessage("Model: " + sm); |
140
|
|
|
|
141
|
|
|
final Model model = createModel(sm); |
142
|
|
|
matches = discoverAgainstSingleModel(model); |
143
|
|
|
finalList = ListUtils.union(finalList, matches); |
144
|
|
|
pb.step(); |
145
|
|
|
} |
146
|
|
|
for (final File fm : CollectionUtils.emptyIfNull(config.getFileModels())) { |
147
|
|
|
log.info("********************************"); |
148
|
|
|
log.info("Processing model " + fm); |
149
|
|
|
log.info("********************************"); |
150
|
|
|
pb.setExtraMessage("Model: " + fm.getName()); |
151
|
|
|
|
152
|
|
|
final Model model = createModel(fm); |
153
|
|
|
matches = discoverAgainstSingleModel(model); |
154
|
|
|
finalList = ListUtils.union(finalList, matches); |
155
|
|
|
pb.step(); |
156
|
|
|
} |
157
|
|
|
} |
158
|
|
|
|
159
|
|
|
log.info("List of suspects:"); |
160
|
|
|
|
161
|
|
|
final Score score = new Score(); |
162
|
|
|
int highRiskColumns = 0; |
163
|
|
|
int rowCount = 0; |
164
|
|
|
|
165
|
|
|
for (final ColumnMatch match : finalList) { |
166
|
|
|
|
167
|
|
|
ColumnMetaData column = match.getColumn(); |
168
|
|
|
// Row count |
169
|
|
|
if (config.getCalculateScore()) { |
170
|
|
|
log.debug("Counting number of rows ..."); |
171
|
|
|
rowCount = ReportUtil.rowCount(factory, |
172
|
|
|
column.getTable().getTableName()); |
173
|
|
|
} else { |
174
|
|
|
log.debug("Skipping counting number of rows ..."); |
175
|
|
|
} |
176
|
|
|
|
177
|
|
|
// Getting 5 sample values |
178
|
|
|
final List<String> sampleDataList = ReportUtil.sampleData(factory, column); |
179
|
|
|
// Output |
180
|
|
|
log.info("Column : " + column.toString()); |
181
|
|
|
log.info(StringUtils.repeat('=', column.toString().length() + 30)); |
182
|
|
|
log.info("Model : " + match.getModel()); |
183
|
|
|
log.info("Number of rows in the table : " + rowCount); |
184
|
|
|
|
185
|
|
|
if (config.getCalculateScore()) { |
186
|
|
|
log.info("Score : " + score.columnScore(rowCount)); |
187
|
|
|
} else { |
188
|
|
|
log.info("Score : N/A"); |
189
|
|
|
} |
190
|
|
|
|
191
|
|
|
log.info("Sample data"); |
192
|
|
|
log.info(StringUtils.repeat('-', 11)); |
193
|
|
|
|
194
|
|
|
sampleDataList.forEach((sampleData) -> { |
195
|
|
|
log.info(sampleData); |
196
|
|
|
}); |
197
|
|
|
|
198
|
|
|
log.info(""); |
199
|
|
|
|
200
|
|
|
// Score calculation is evaluated with score_calculation parameter |
201
|
|
|
if (config.getCalculateScore() && score.columnScore(rowCount).equals("High")) { |
202
|
|
|
highRiskColumns++; |
203
|
|
|
} |
204
|
|
|
} |
205
|
|
|
|
206
|
|
|
// Only applicable when parameter table_rowcount=yes otherwise score calculation should not be done |
207
|
|
|
if (config.getCalculateScore()) { |
208
|
|
|
log.info("Overall score: " + score.dataStoreScore()); |
209
|
|
|
log.info(""); |
210
|
|
|
|
211
|
|
|
if ((finalList != null) && (finalList.size() > 0)) { |
212
|
|
|
log.info("============================================"); |
213
|
|
|
|
214
|
|
|
if (finalList.size() > config.getThresholdCount()) { |
215
|
|
|
log.info( |
216
|
|
|
"Number of PI [{}] columns is higher than defined threashold [{}]", |
217
|
|
|
finalList.size(), |
218
|
|
|
config.getThresholdCount() |
219
|
|
|
); |
220
|
|
|
} else { |
221
|
|
|
log.info( |
222
|
|
|
"Number of PI [{}] columns is lower than or equal to defined threashold [{}]", |
223
|
|
|
finalList.size(), |
224
|
|
|
config.getThresholdCount() |
225
|
|
|
); |
226
|
|
|
} |
227
|
|
|
if (highRiskColumns > config.getThresholdHighRisk()) { |
228
|
|
|
log.info( |
229
|
|
|
"Number of High risk PI [{}] columns is higher than defined threashold [{}]", |
230
|
|
|
highRiskColumns, |
231
|
|
|
config.getThresholdHighRisk() |
232
|
|
|
); |
233
|
|
|
} else { |
234
|
|
|
log.info( |
235
|
|
|
"Number of High risk PI [{}] columns is lower than or equal to defined threashold [{}]", |
236
|
|
|
highRiskColumns, |
237
|
|
|
config.getThresholdHighRisk() |
238
|
|
|
); |
239
|
|
|
} |
240
|
|
|
} |
241
|
|
|
} else { |
242
|
|
|
log.info("Overall score: N/A"); |
243
|
|
|
} |
244
|
|
|
|
245
|
|
|
return matches.stream().map((c) -> c.getColumn()).collect(Collectors.toList()); |
246
|
|
|
} |
247
|
|
|
|
248
|
|
|
private List<ColumnMatch> discoverAgainstSingleModel(final Model model) |
249
|
|
|
throws ParseException, |
250
|
|
|
DataDefenderException, |
251
|
|
|
IOException, |
252
|
|
|
SQLException { |
253
|
|
|
|
254
|
|
|
final IMetaData metaData = factory.fetchMetaData(); |
255
|
|
|
final List<TableMetaData> map = metaData.getMetaData(); |
256
|
|
|
|
257
|
|
|
// Start running NLP algorithms for each column and collect percentage |
258
|
|
|
matches = new ArrayList<>(); |
259
|
|
|
|
260
|
|
|
ColumnMatch specialCaseData; |
261
|
|
|
final List<ColumnMatch> specialCaseDataList = new ArrayList(); |
262
|
|
|
List<String> specialCaseFunctions = config.getExtensions(); |
263
|
|
|
boolean specialCase = CollectionUtils.isNotEmpty(specialCaseFunctions); |
264
|
|
|
|
265
|
|
|
log.info("Extension list: {}", specialCaseFunctions); |
266
|
|
|
|
267
|
|
|
final ISqlBuilder sqlBuilder = factory.createSQLBuilder(); |
268
|
|
|
List<Probability> probabilityList; |
269
|
|
|
|
270
|
|
|
for (final TableMetaData table : map) { |
271
|
|
|
|
272
|
|
|
final String tableName = table.getTableName(); |
273
|
|
|
final String prefixed = sqlBuilder.prefixSchema(tableName); |
274
|
|
|
final String cntQuery = "SELECT COUNT(*) FROM " + prefixed; |
275
|
|
|
|
276
|
|
|
int numRows = config.getLimit(); |
277
|
|
|
try ( |
278
|
|
|
Statement stmt = factory.getConnection().createStatement(); |
279
|
|
|
ResultSet rs = stmt.executeQuery(cntQuery) |
280
|
|
|
) { |
281
|
|
|
rs.next(); |
282
|
|
|
numRows = Math.min(numRows, rs.getInt(1)); |
283
|
|
|
} catch (SQLException e) { |
284
|
|
|
} |
285
|
|
|
|
286
|
|
|
List<ColumnMetaData> cols = table.getColumns().stream() |
287
|
|
|
.filter((c) -> !c.isForeignKey() && !c.isPrimaryKey()) |
288
|
|
|
.collect(Collectors.toList()); |
289
|
|
|
|
290
|
|
|
int numSteps = numRows * cols.size(); |
291
|
|
|
try (ProgressBar pb = new ProgressBar(model.getName() + " in " + tableName, numSteps)) { |
292
|
|
|
for (final ColumnMetaData data : cols) { |
293
|
|
|
|
294
|
|
|
final String columnName = data.getColumnName(); |
295
|
|
|
pb.setExtraMessage(columnName); |
296
|
|
|
|
297
|
|
|
log.debug("Column type: [" + data.getColumnType() + "]"); |
298
|
|
|
probabilityList = new ArrayList<>(); |
299
|
|
|
log.info("Analyzing column [" + tableName + "].[" + columnName + "]"); |
300
|
|
|
|
301
|
|
|
final String query = sqlBuilder.buildSelectWithLimit( |
302
|
|
|
"SELECT " + columnName + " FROM " + prefixed + " WHERE " |
303
|
|
|
+ columnName + " IS NOT NULL", |
304
|
|
|
config.getLimit() |
305
|
|
|
); |
306
|
|
|
|
307
|
|
|
log.debug("Executing query against database: " + query); |
308
|
|
|
try ( |
309
|
|
|
Statement stmt = factory.getConnection().createStatement(); |
310
|
|
|
ResultSet resultSet = stmt.executeQuery(query) |
311
|
|
|
) { |
312
|
|
|
while (resultSet.next()) { |
313
|
|
|
pb.step(); |
314
|
|
|
if (Objects.equals(Blob.class, data.getColumnType())) { |
315
|
|
|
continue; |
316
|
|
|
} |
317
|
|
|
if (model.getName().equals("location") && ClassUtils.isAssignable(data.getColumnType(), Number.class)) { |
318
|
|
|
continue; |
319
|
|
|
} |
320
|
|
|
|
321
|
|
|
String sentence = ""; |
322
|
|
|
if (Objects.equals(Clob.class, data.getColumnType())) { |
323
|
|
|
Clob clob = resultSet.getClob(1); |
324
|
|
|
InputStream is = clob.getAsciiStream(); |
325
|
|
|
sentence = IOUtils.toString(is, StandardCharsets.UTF_8.name()); |
326
|
|
|
} else { |
327
|
|
|
sentence = resultSet.getString(1); |
328
|
|
|
} |
329
|
|
|
log.debug(sentence); |
330
|
|
|
if (specialCaseFunctions != null && specialCase) { |
331
|
|
|
try { |
332
|
|
|
for (String specialCaseFunction : specialCaseFunctions) { |
333
|
|
|
if ((sentence != null) && !sentence.isEmpty()) { |
334
|
|
|
log.debug("sentence: " + sentence); |
335
|
|
|
log.debug("data: " + data); |
336
|
|
|
specialCaseData = (ColumnMatch) callExtension(specialCaseFunction, data, sentence); |
337
|
|
|
if (specialCaseData != null) { |
338
|
|
|
if (!specialCaseDataList.contains(specialCaseData)) { |
339
|
|
|
log.debug("Adding new special case data: " + specialCaseData.toString()); |
340
|
|
|
specialCaseDataList.add(specialCaseData); |
341
|
|
|
} |
342
|
|
|
} else { |
343
|
|
|
log.debug("No special case data found"); |
344
|
|
|
} |
345
|
|
|
} |
346
|
|
|
} |
347
|
|
|
} catch (NoSuchMethodException | IllegalAccessException | InvocationTargetException e) { |
348
|
|
|
log.error(e.toString()); |
349
|
|
|
} |
350
|
|
|
} |
351
|
|
|
|
352
|
|
|
if ((sentence != null) &&!sentence.isEmpty()) { |
353
|
|
|
String processingValue; |
354
|
|
|
|
355
|
|
|
if (Objects.equals(Date.class, data.getColumnType()) |
356
|
|
|
|| Objects.equals(Timestamp.class, data.getColumnType()) |
357
|
|
|
|| Objects.equals(Time.class, data.getColumnType())) { |
358
|
|
|
|
359
|
|
|
final DateFormat originalFormat = new SimpleDateFormat(sentence, Locale.ENGLISH); |
360
|
|
|
final DateFormat targetFormat = new SimpleDateFormat("MMM d, yy", Locale.ENGLISH); |
361
|
|
|
final java.util.Date date = originalFormat.parse(sentence); |
362
|
|
|
|
363
|
|
|
processingValue = targetFormat.format(date); |
364
|
|
|
} else { |
365
|
|
|
processingValue = sentence; |
366
|
|
|
} |
367
|
|
|
|
368
|
|
|
// LOG.debug(sentence); |
369
|
|
|
// Convert sentence into tokens |
370
|
|
|
final String tokens[] = model.getTokenizer().tokenize(processingValue); |
371
|
|
|
|
372
|
|
|
// Find names |
373
|
|
|
final Span nameSpans[] = model.getNameFinder().find(tokens); |
374
|
|
|
|
375
|
|
|
// find probabilities for names |
376
|
|
|
final double[] spanProbs = model.getNameFinder().probs(nameSpans); |
377
|
|
|
|
378
|
|
|
// Collect top X tokens with highest probability |
379
|
|
|
// display names |
380
|
|
|
for (int i = 0; i < nameSpans.length; i++) { |
381
|
|
|
final String span = nameSpans[i].toString(); |
382
|
|
|
|
383
|
|
|
if (span.length() > 2) { |
384
|
|
|
log.debug("Span: " + span); |
385
|
|
|
log.debug("Covered text is: " + tokens[nameSpans[i].getStart()]); |
386
|
|
|
log.debug("Probability is: " + spanProbs[i]); |
387
|
|
|
probabilityList.add(new Probability(tokens[nameSpans[i].getStart()], spanProbs[i])); |
388
|
|
|
} |
389
|
|
|
} |
390
|
|
|
|
391
|
|
|
// From OpenNLP documentation: |
392
|
|
|
// After every document clearAdaptiveData must be called to clear the adaptive data in the feature generators. |
393
|
|
|
// Not calling clearAdaptiveData can lead to a sharp drop in the detection rate after a few documents. |
394
|
|
|
model.getNameFinder().clearAdaptiveData(); |
395
|
|
|
} |
396
|
|
|
} |
397
|
|
|
} catch (SQLException sqle) { |
398
|
|
|
log.error(sqle.toString()); |
399
|
|
|
} |
400
|
|
|
|
401
|
|
|
final double averageProbability = calculateAverage(probabilityList); |
402
|
|
|
|
403
|
|
|
if (averageProbability >= config.getProbabilityThreshold()) { |
404
|
|
|
matches.add(new ColumnMatch( |
405
|
|
|
data, |
406
|
|
|
averageProbability, |
407
|
|
|
model.getName(), |
408
|
|
|
probabilityList) |
409
|
|
|
); |
410
|
|
|
} |
411
|
|
|
} |
412
|
|
|
pb.stepTo(numSteps); |
413
|
|
|
} |
414
|
|
|
} |
415
|
|
|
|
416
|
|
|
// Special processing |
417
|
|
|
if (!specialCaseDataList.isEmpty()) { |
418
|
|
|
log.debug("Special case data is processed :" + specialCaseDataList.toString()); |
419
|
|
|
|
420
|
|
|
specialCaseDataList.forEach((specialData) -> { |
421
|
|
|
matches.add(specialData); |
422
|
|
|
}); |
423
|
|
|
} |
424
|
|
|
|
425
|
|
|
return matches; |
426
|
|
|
} |
427
|
|
|
} |
428
|
|
|
|