1
|
|
|
"""!
|
2
|
|
|
|
3
|
|
|
@brief Cluster analysis algorithm: Sync
|
4
|
|
|
@details Based on article description:
|
5
|
|
|
- T.Miyano, T.Tsutsui. Data Synchronization as a Method of Data Mining. 2007.
|
6
|
|
|
|
7
|
|
|
@authors Andrei Novikov ([email protected])
|
8
|
|
|
@date 2014-2017
|
9
|
|
|
@copyright GNU Public License
|
10
|
|
|
|
11
|
|
|
@cond GNU_PUBLIC_LICENSE
|
12
|
|
|
PyClustering is free software: you can redistribute it and/or modify
|
13
|
|
|
it under the terms of the GNU General Public License as published by
|
14
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
15
|
|
|
(at your option) any later version.
|
16
|
|
|
|
17
|
|
|
PyClustering is distributed in the hope that it will be useful,
|
18
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
19
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
20
|
|
|
GNU General Public License for more details.
|
21
|
|
|
|
22
|
|
|
You should have received a copy of the GNU General Public License
|
23
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
24
|
|
|
@endcond
|
25
|
|
|
|
26
|
|
|
"""
|
27
|
|
|
|
28
|
|
|
|
29
|
|
|
import matplotlib.pyplot as plt;
|
|
|
|
|
30
|
|
|
import matplotlib.animation as animation;
|
|
|
|
|
31
|
|
|
|
32
|
|
|
import math;
|
33
|
|
|
|
34
|
|
|
from pyclustering.cluster.encoder import type_encoding;
|
35
|
|
|
from pyclustering.cluster import cluster_visualizer;
|
36
|
|
|
|
37
|
|
|
from pyclustering.core.syncnet_wrapper import syncnet_create_network, syncnet_process, syncnet_destroy_network, syncnet_analyser_destroy;
|
38
|
|
|
from pyclustering.core.sync_wrapper import sync_connectivity_matrix;
|
39
|
|
|
|
40
|
|
|
from pyclustering.nnet.sync import sync_dynamic, sync_network, sync_visualizer;
|
41
|
|
|
from pyclustering.nnet import conn_represent, initial_type, conn_type, solve_type;
|
42
|
|
|
|
43
|
|
|
from pyclustering.utils import euclidean_distance;
|
44
|
|
|
|
45
|
|
|
|
46
|
|
|
class syncnet_analyser(sync_dynamic):
|
47
|
|
|
"""!
|
48
|
|
|
@brief Performs analysis of output dynamic of the oscillatory network syncnet to extract information about cluster allocation.
|
49
|
|
|
|
50
|
|
|
"""
|
51
|
|
|
|
52
|
|
|
def __init__(self, phase, time, pointer_sync_analyser):
|
53
|
|
|
"""!
|
54
|
|
|
@brief Constructor of the analyser.
|
55
|
|
|
|
56
|
|
|
@param[in] phase (list): Output dynamic of the oscillatory network, where one iteration consists of all phases of oscillators.
|
57
|
|
|
@param[in] time (list): Simulation time.
|
58
|
|
|
@param[in] pointer_sync_analyser (POINTER): Pointer to CCORE analyser, if specified then other arguments can be omitted.
|
59
|
|
|
|
60
|
|
|
"""
|
61
|
|
|
super().__init__(phase, time, pointer_sync_analyser);
|
62
|
|
|
|
63
|
|
|
|
64
|
|
|
def __del__(self):
|
65
|
|
|
"""!
|
66
|
|
|
@brief Desctructor of the analyser.
|
67
|
|
|
|
68
|
|
|
"""
|
69
|
|
|
|
70
|
|
|
if (self._ccore_sync_dynamic_pointer is not None):
|
71
|
|
|
syncnet_analyser_destroy(self._ccore_sync_dynamic_pointer);
|
72
|
|
|
self._ccore_sync_dynamic_pointer = None;
|
73
|
|
|
|
74
|
|
|
|
75
|
|
|
def allocate_clusters(self, eps = 0.01, indexes = None, iteration = None):
|
76
|
|
|
"""!
|
77
|
|
|
@brief Returns list of clusters in line with state of ocillators (phases).
|
78
|
|
|
|
79
|
|
|
@param[in] eps (double): Tolerance level that define maximal difference between phases of oscillators in one cluster.
|
80
|
|
|
@param[in] indexes (list): List of real object indexes and it should be equal to amount of oscillators (in case of 'None' - indexes are in range [0; amount_oscillators]).
|
81
|
|
|
@param[in] iteration (uint): Iteration of simulation that should be used for allocation.
|
82
|
|
|
|
83
|
|
|
@return (list) List of clusters, for example [ [cluster1], [cluster2], ... ].)
|
84
|
|
|
|
85
|
|
|
"""
|
86
|
|
|
|
87
|
|
|
return self.allocate_sync_ensembles(eps, indexes, iteration);
|
88
|
|
|
|
89
|
|
|
|
90
|
|
|
def get_cluster_encoding(self):
|
91
|
|
|
"""!
|
92
|
|
|
@brief Returns clustering result representation type that indicate how clusters are encoded.
|
93
|
|
|
|
94
|
|
|
@return (type_encoding) Clustering result representation.
|
95
|
|
|
|
96
|
|
|
@see get_clusters()
|
97
|
|
|
|
98
|
|
|
"""
|
99
|
|
|
|
100
|
|
|
return type_encoding.CLUSTER_INDEX_LIST_SEPARATION;
|
101
|
|
|
|
102
|
|
|
|
103
|
|
|
class syncnet_visualizer(sync_visualizer):
|
104
|
|
|
"""!
|
105
|
|
|
@brief Visualizer of output dynamic of oscillatory network 'syncnet' for cluster analysis.
|
106
|
|
|
|
107
|
|
|
"""
|
108
|
|
|
|
109
|
|
|
@staticmethod
|
110
|
|
|
def animate_cluster_allocation(dataset, analyser, animation_velocity = 75, tolerance = 0.1, save_movie = None, title = None):
|
111
|
|
|
"""!
|
112
|
|
|
@brief Shows animation of output dynamic (output of each oscillator) during simulation on a circle from [0; 2pi].
|
113
|
|
|
|
114
|
|
|
@param[in] dataset (list): Input data that was used for processing by the network.
|
115
|
|
|
@param[in] analyser (syncnet_analyser): Output dynamic analyser of the Sync network.
|
116
|
|
|
@param[in] animation_velocity (uint): Interval between frames in milliseconds.
|
117
|
|
|
@param[in] tolerance (double): Tolerance level that define maximal difference between phases of oscillators in one cluster.
|
118
|
|
|
@param[in] save_movie (string): If it is specified then animation will be stored to file that is specified in this parameter.
|
119
|
|
|
@param[in] title (string): If it is specified then title will be displayed on the animation plot.
|
120
|
|
|
|
121
|
|
|
"""
|
122
|
|
|
|
123
|
|
|
figure = plt.figure();
|
124
|
|
|
|
125
|
|
|
def init_frame():
|
126
|
|
|
return frame_generation(0);
|
127
|
|
|
|
128
|
|
|
def frame_generation(index_dynamic):
|
129
|
|
|
figure.clf();
|
130
|
|
|
if (title is not None):
|
131
|
|
|
figure.suptitle(title, fontsize = 26, fontweight = 'bold');
|
132
|
|
|
|
133
|
|
|
ax1 = figure.add_subplot(121, projection='polar');
|
134
|
|
|
|
135
|
|
|
clusters = analyser.allocate_clusters(eps = tolerance, iteration = index_dynamic);
|
136
|
|
|
dynamic = analyser.output[index_dynamic];
|
137
|
|
|
|
138
|
|
|
visualizer = cluster_visualizer(size_row = 2);
|
139
|
|
|
visualizer.append_clusters(clusters, dataset);
|
140
|
|
|
|
141
|
|
|
artist1, = ax1.plot(dynamic, [1.0] * len(dynamic), marker = 'o', color = 'blue', ls = '');
|
142
|
|
|
|
143
|
|
|
visualizer.show(figure, display = False);
|
144
|
|
|
artist2 = figure.gca();
|
145
|
|
|
|
146
|
|
|
return [ artist1, artist2 ];
|
147
|
|
|
|
148
|
|
|
cluster_animation = animation.FuncAnimation(figure, frame_generation, len(analyser), interval = animation_velocity, init_func = init_frame, repeat_delay = 5000);
|
149
|
|
|
|
150
|
|
|
if (save_movie is not None):
|
151
|
|
|
# plt.rcParams['animation.ffmpeg_path'] = 'D:\\Program Files\\ffmpeg-3.3.1-win64-static\\bin\\ffmpeg.exe';
|
152
|
|
|
# ffmpeg_writer = animation.FFMpegWriter(fps = 15);
|
153
|
|
|
# cluster_animation.save(save_movie, writer = ffmpeg_writer);
|
154
|
|
|
cluster_animation.save(save_movie, writer = 'ffmpeg', fps = 15, bitrate = 1500);
|
155
|
|
|
else:
|
156
|
|
|
plt.show();
|
157
|
|
|
|
158
|
|
|
|
159
|
|
|
class syncnet(sync_network):
|
160
|
|
|
"""!
|
161
|
|
|
@brief Class represents clustering algorithm SyncNet.
|
162
|
|
|
@details SyncNet is bio-inspired algorithm that is based on oscillatory network that uses modified Kuramoto model. Each attribute of a data object
|
163
|
|
|
is considered as a phase oscillator.
|
164
|
|
|
|
165
|
|
|
Example:
|
166
|
|
|
@code
|
167
|
|
|
# read sample for clustering from some file
|
168
|
|
|
sample = read_sample(path_to_file);
|
169
|
|
|
|
170
|
|
|
# create oscillatory network with connectivity radius 0.5 using CCORE (C++ implementation of pyclustering)
|
171
|
|
|
network = syncnet(sample, 0.5, ccore = True);
|
172
|
|
|
|
173
|
|
|
# run cluster analysis and collect output dynamic of the oscillatory network,
|
174
|
|
|
# network simulation is performed by Runge Kutta Fehlberg 45.
|
175
|
|
|
(dyn_time, dyn_phase) = network.process(0.998, solve_type.RFK45, True);
|
176
|
|
|
|
177
|
|
|
# show oscillatory network
|
178
|
|
|
network.show_network();
|
179
|
|
|
|
180
|
|
|
# obtain clustering results
|
181
|
|
|
clusters = network.get_clusters();
|
182
|
|
|
|
183
|
|
|
# show clusters
|
184
|
|
|
draw_clusters(sample, clusters);
|
185
|
|
|
@endcode
|
186
|
|
|
|
187
|
|
|
"""
|
188
|
|
|
|
189
|
|
|
def __init__(self, sample, radius, conn_repr = conn_represent.MATRIX, initial_phases = initial_type.RANDOM_GAUSSIAN, enable_conn_weight = False, ccore = False):
|
190
|
|
|
"""!
|
191
|
|
|
@brief Contructor of the oscillatory network SYNC for cluster analysis.
|
192
|
|
|
|
193
|
|
|
@param[in] sample (list): Input data that is presented as list of points (objects), each point should be represented by list or tuple.
|
194
|
|
|
@param[in] radius (double): Connectivity radius between points, points should be connected if distance between them less then the radius.
|
195
|
|
|
@param[in] conn_repr (conn_represent): Internal representation of connection in the network: matrix or list. Ignored in case of usage of CCORE library.
|
196
|
|
|
@param[in] initial_phases (initial_type): Type of initialization of initial phases of oscillators (random, uniformly distributed, etc.).
|
197
|
|
|
@param[in] enable_conn_weight (bool): If True - enable mode when strength between oscillators depends on distance between two oscillators.
|
198
|
|
|
If False - all connection between oscillators have the same strength that equals to 1 (True).
|
199
|
|
|
@param[in] ccore (bool): Defines should be CCORE C++ library used instead of Python code or not.
|
200
|
|
|
|
201
|
|
|
"""
|
202
|
|
|
|
203
|
|
|
self.__ccore_network_pointer = None;
|
204
|
|
|
self._osc_loc = sample;
|
205
|
|
|
self._num_osc = len(sample);
|
206
|
|
|
|
207
|
|
|
if (ccore is True):
|
208
|
|
|
self.__ccore_network_pointer = syncnet_create_network(sample, radius, initial_phases, enable_conn_weight);
|
209
|
|
|
|
210
|
|
|
# Default representation that is returned by CCORE is matrix.
|
211
|
|
|
self._conn_represent = conn_represent.MATRIX;
|
212
|
|
|
|
213
|
|
|
else:
|
214
|
|
|
super().__init__(len(sample), 1, 0, conn_type.DYNAMIC, conn_repr, initial_phases, False);
|
215
|
|
|
|
216
|
|
|
self._conn_weight = None;
|
217
|
|
|
self._ena_conn_weight = enable_conn_weight;
|
218
|
|
|
|
219
|
|
|
# Create connections.
|
220
|
|
|
if (radius is not None):
|
221
|
|
|
self._create_connections(radius);
|
222
|
|
|
|
223
|
|
|
|
224
|
|
|
def __del__(self):
|
225
|
|
|
"""!
|
226
|
|
|
@brief Destructor of oscillatory network is based on Kuramoto model.
|
227
|
|
|
|
228
|
|
|
"""
|
229
|
|
|
|
230
|
|
|
if (self.__ccore_network_pointer is not None):
|
231
|
|
|
syncnet_destroy_network(self.__ccore_network_pointer);
|
232
|
|
|
self.__ccore_network_pointer = None;
|
233
|
|
|
|
234
|
|
|
|
235
|
|
|
def _create_connections(self, radius):
|
236
|
|
|
"""!
|
237
|
|
|
@brief Create connections between oscillators in line with input radius of connectivity.
|
238
|
|
|
|
239
|
|
|
@param[in] radius (double): Connectivity radius between oscillators.
|
240
|
|
|
|
241
|
|
|
"""
|
242
|
|
|
|
243
|
|
|
if (self._ena_conn_weight is True):
|
244
|
|
|
self._conn_weight = [[0] * self._num_osc for index in range(0, self._num_osc, 1)];
|
245
|
|
|
|
246
|
|
|
maximum_distance = 0;
|
247
|
|
|
minimum_distance = float('inf');
|
248
|
|
|
|
249
|
|
|
# Create connections
|
250
|
|
|
for i in range(0, self._num_osc, 1):
|
251
|
|
|
for j in range(i + 1, self._num_osc, 1):
|
252
|
|
|
dist = euclidean_distance(self._osc_loc[i], self._osc_loc[j]);
|
253
|
|
|
|
254
|
|
|
if (self._ena_conn_weight is True):
|
255
|
|
|
self._conn_weight[i][j] = dist;
|
256
|
|
|
self._conn_weight[j][i] = dist;
|
257
|
|
|
|
258
|
|
|
if (dist > maximum_distance): maximum_distance = dist;
|
259
|
|
|
if (dist < minimum_distance): minimum_distance = dist;
|
260
|
|
|
|
261
|
|
|
if (dist <= radius):
|
262
|
|
|
self.set_connection(i, j);
|
263
|
|
|
|
264
|
|
|
if (self._ena_conn_weight is True):
|
265
|
|
|
multiplier = 1;
|
266
|
|
|
subtractor = 0;
|
267
|
|
|
|
268
|
|
|
if (maximum_distance != minimum_distance):
|
269
|
|
|
multiplier = (maximum_distance - minimum_distance);
|
270
|
|
|
subtractor = minimum_distance;
|
271
|
|
|
|
272
|
|
|
for i in range(0, self._num_osc, 1):
|
273
|
|
|
for j in range(i + 1, self._num_osc, 1):
|
274
|
|
|
value_conn_weight = (self._conn_weight[i][j] - subtractor) / multiplier;
|
275
|
|
|
|
276
|
|
|
self._conn_weight[i][j] = value_conn_weight;
|
277
|
|
|
self._conn_weight[j][i] = value_conn_weight;
|
278
|
|
|
|
279
|
|
|
|
280
|
|
|
def process(self, order = 0.998, solution = solve_type.FAST, collect_dynamic = True):
|
281
|
|
|
"""!
|
282
|
|
|
@brief Peforms cluster analysis using simulation of the oscillatory network.
|
283
|
|
|
|
284
|
|
|
@param[in] order (double): Order of synchronization that is used as indication for stopping processing.
|
285
|
|
|
@param[in] solution (solve_type): Specified type of solving diff. equation.
|
286
|
|
|
@param[in] collect_dynamic (bool): Specified requirement to collect whole dynamic of the network.
|
287
|
|
|
|
288
|
|
|
@return (syncnet_analyser) Returns analyser of results of clustering.
|
289
|
|
|
|
290
|
|
|
"""
|
291
|
|
|
|
292
|
|
|
if (self.__ccore_network_pointer is not None):
|
293
|
|
|
pointer_output_dynamic = syncnet_process(self.__ccore_network_pointer, order, solution, collect_dynamic);
|
294
|
|
|
return syncnet_analyser(None, None, pointer_output_dynamic);
|
295
|
|
|
else:
|
296
|
|
View Code Duplication |
output_sync_dynamic = self.simulate_dynamic(order, solution, collect_dynamic);
|
|
|
|
|
297
|
|
|
return syncnet_analyser(output_sync_dynamic.output, output_sync_dynamic.time, None);
|
298
|
|
|
|
299
|
|
|
|
300
|
|
|
def _phase_kuramoto(self, teta, t, argv):
|
301
|
|
View Code Duplication |
"""!
|
|
|
|
|
302
|
|
|
@brief Overrided method for calculation of oscillator phase.
|
303
|
|
|
|
304
|
|
|
@param[in] teta (double): Current value of phase.
|
305
|
|
|
@param[in] t (double): Time (can be ignored).
|
306
|
|
|
@param[in] argv (uint): Index of oscillator whose phase represented by argument teta.
|
307
|
|
|
|
308
|
|
|
@return (double) New value of phase of oscillator with index 'argv'.
|
309
|
|
View Code Duplication |
|
|
|
|
|
310
|
|
|
"""
|
311
|
|
|
|
312
|
|
|
index = argv; # index of oscillator
|
313
|
|
|
phase = 0.0; # phase of a specified oscillator that will calculated in line with current env. states.
|
314
|
|
View Code Duplication |
|
|
|
|
|
315
|
|
|
neighbors = self.get_neighbors(index);
|
316
|
|
|
for k in neighbors:
|
317
|
|
|
conn_weight = 1.0;
|
318
|
|
|
if (self._ena_conn_weight is True):
|
319
|
|
|
conn_weight = self._conn_weight[index][k];
|
320
|
|
|
|
321
|
|
|
phase += conn_weight * self._weight * math.sin(self._phases[k] - teta);
|
322
|
|
|
|
323
|
|
|
divider = len(neighbors);
|
324
|
|
|
if (divider == 0):
|
325
|
|
|
divider = 1.0;
|
326
|
|
|
|
327
|
|
|
return ( self._freq[index] + (phase / divider) );
|
328
|
|
|
|
329
|
|
|
|
330
|
|
|
def show_network(self):
|
331
|
|
|
"""!
|
332
|
|
|
@brief Shows connections in the network. It supports only 2-d and 3-d representation.
|
333
|
|
|
|
334
|
|
|
"""
|
335
|
|
|
|
336
|
|
|
if ( (self.__ccore_network_pointer is not None) and (self._osc_conn is None) ):
|
337
|
|
|
self._osc_conn = sync_connectivity_matrix(self.__ccore_network_pointer);
|
338
|
|
|
|
339
|
|
|
dimension = len(self._osc_loc[0]);
|
340
|
|
|
if ( (dimension != 3) and (dimension != 2) ):
|
341
|
|
|
raise NameError('Network that is located in different from 2-d and 3-d dimensions can not be represented');
|
342
|
|
|
|
343
|
|
|
from matplotlib.font_manager import FontProperties;
|
|
|
|
|
344
|
|
|
from matplotlib import rcParams;
|
|
|
|
|
345
|
|
|
|
346
|
|
|
rcParams['font.sans-serif'] = ['Arial'];
|
347
|
|
|
rcParams['font.size'] = 12;
|
348
|
|
|
|
349
|
|
|
fig = plt.figure();
|
350
|
|
|
axes = None;
|
351
|
|
|
if (dimension == 2):
|
352
|
|
|
axes = fig.add_subplot(111);
|
353
|
|
|
elif (dimension == 3):
|
354
|
|
|
axes = fig.gca(projection='3d');
|
355
|
|
|
|
356
|
|
|
surface_font = FontProperties();
|
357
|
|
|
surface_font.set_name('Arial');
|
358
|
|
|
surface_font.set_size('12');
|
359
|
|
|
|
360
|
|
|
for i in range(0, self._num_osc, 1):
|
361
|
|
|
if (dimension == 2):
|
362
|
|
|
axes.plot(self._osc_loc[i][0], self._osc_loc[i][1], 'bo');
|
363
|
|
|
if (self._conn_represent == conn_represent.MATRIX):
|
364
|
|
|
for j in range(i, self._num_osc, 1): # draw connection between two points only one time
|
365
|
|
|
if (self.has_connection(i, j) == True):
|
366
|
|
|
axes.plot([self._osc_loc[i][0], self._osc_loc[j][0]], [self._osc_loc[i][1], self._osc_loc[j][1]], 'b-', linewidth = 0.5);
|
367
|
|
|
|
368
|
|
|
else:
|
369
|
|
|
for j in self.get_neighbors(i):
|
370
|
|
|
if ( (self.has_connection(i, j) == True) and (i > j) ): # draw connection between two points only one time
|
371
|
|
|
axes.plot([self._osc_loc[i][0], self._osc_loc[j][0]], [self._osc_loc[i][1], self._osc_loc[j][1]], 'b-', linewidth = 0.5);
|
372
|
|
|
|
373
|
|
|
elif (dimension == 3):
|
374
|
|
|
axes.scatter(self._osc_loc[i][0], self._osc_loc[i][1], self._osc_loc[i][2], c = 'b', marker = 'o');
|
375
|
|
|
|
376
|
|
|
if (self._conn_represent == conn_represent.MATRIX):
|
377
|
|
|
for j in range(i, self._num_osc, 1): # draw connection between two points only one time
|
378
|
|
|
if (self.has_connection(i, j) == True):
|
379
|
|
|
axes.plot([self._osc_loc[i][0], self._osc_loc[j][0]], [self._osc_loc[i][1], self._osc_loc[j][1]], [self._osc_loc[i][2], self._osc_loc[j][2]], 'b-', linewidth = 0.5);
|
380
|
|
|
|
381
|
|
|
else:
|
382
|
|
|
for j in self.get_neighbors(i):
|
383
|
|
|
if ( (self.has_connection(i, j) == True) and (i > j) ): # draw connection between two points only one time
|
384
|
|
|
axes.plot([self._osc_loc[i][0], self._osc_loc[j][0]], [self._osc_loc[i][1], self._osc_loc[j][1]], [self._osc_loc[i][2], self._osc_loc[j][2]], 'b-', linewidth = 0.5);
|
385
|
|
|
|
386
|
|
|
plt.grid();
|
387
|
|
|
plt.show();
|
388
|
|
|
|
389
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.