| 1 |  |  | """!
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  | @brief Examples of usage utils.
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | @authors Andrei Novikov ([email protected])
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  | @date 2014-2016
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  | @copyright GNU Public License
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  | @cond GNU_PUBLIC_LICENSE
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  |     PyClustering is free software: you can redistribute it and/or modify
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  |     it under the terms of the GNU General Public License as published by
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  |     the Free Software Foundation, either version 3 of the License, or
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  |     (at your option) any later version.
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  |     
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  |     PyClustering is distributed in the hope that it will be useful,
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  |     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  |     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  |     GNU General Public License for more details.
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  |     
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  |     You should have received a copy of the GNU General Public License
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  |     along with this program. If not, see <http://www.gnu.org/licenses/>.
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  | @endcond
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  | """
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  | import pyclustering.utils as utils;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  | from pyclustering.cluster.agglomerative import agglomerative;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  | from pyclustering.samples.definitions import SIMPLE_SAMPLES;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  | import matplotlib.pyplot as plt;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  | 
 | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 33 |  |  | 
 | 
            
                                                                        
                            
            
                                    
            
            
                | 34 |  |  | def cluster_distances(path_sample, amount_clusters):
 | 
            
                                                                        
                            
            
                                    
            
            
                | 35 |  |  |     distances = ['euclidian', 'manhattan', 'avr-inter', 'avr-intra', 'variance'];
 | 
            
                                                                        
                            
            
                                    
            
            
                | 36 |  |  |     
 | 
            
                                                                        
                            
            
                                    
            
            
                | 37 |  |  |     sample = utils.read_sample(path_sample);
 | 
            
                                                                        
                            
            
                                    
            
            
                | 38 |  |  |     
 | 
            
                                                                        
                            
            
                                    
            
            
                | 39 |  |  |     agglomerative_instance = agglomerative(sample, amount_clusters);
 | 
            
                                                                        
                            
            
                                    
            
            
                | 40 |  |  |     agglomerative_instance.process();
 | 
            
                                                                        
                            
            
                                    
            
            
                | 41 |  |  |     
 | 
            
                                                                        
                            
            
                                    
            
            
                | 42 |  |  |     obtained_clusters = agglomerative_instance.get_clusters();
 | 
            
                                                                        
                            
            
                                    
            
            
                | 43 |  |  |     
 | 
            
                                                                        
                            
            
                                    
            
            
                | 44 |  |  |     print("Measurements for:", path_sample);
 | 
            
                                                                        
                            
            
                                    
            
            
                | 45 |  |  |     
 | 
            
                                                                        
                            
            
                                    
            
            
                | 46 |  |  |     for index_cluster in range(len(obtained_clusters)):
 | 
            
                                                                        
                            
            
                                    
            
            
                | 47 |  |  |         for index_neighbor in range(index_cluster + 1, len(obtained_clusters), 1):
 | 
            
                                                                        
                            
            
                                    
            
            
                | 48 |  |  |             cluster1 = obtained_clusters[index_cluster];
 | 
            
                                                                        
                            
            
                                    
            
            
                | 49 |  |  |             cluster2 = obtained_clusters[index_neighbor];
 | 
            
                                                                        
                            
            
                                    
            
            
                | 50 |  |  |             
 | 
            
                                                                        
                            
            
                                    
            
            
                | 51 |  |  |             center_cluster1 = utils.centroid(sample, cluster1);
 | 
            
                                                                        
                            
            
                                    
            
            
                | 52 |  |  |             center_cluster2 = utils.centroid(sample, cluster2);
 | 
            
                                                                        
                            
            
                                    
            
            
                | 53 |  |  |             
 | 
            
                                                                        
                            
            
                                    
            
            
                | 54 |  |  |             for index_distance_type in range(len(distances)):
 | 
            
                                                                        
                            
            
                                    
            
            
                | 55 |  |  |                 distance = None;
 | 
            
                                                                        
                            
            
                                    
            
            
                | 56 |  |  |                 distance_type = distances[index_distance_type];
 | 
            
                                                                        
                            
            
                                    
            
            
                | 57 |  |  |         
 | 
            
                                                                        
                            
            
                                    
            
            
                | 58 |  |  |                 if (distance_type == 'euclidian'):
 | 
            
                                                                        
                            
            
                                    
            
            
                | 59 |  |  |                     distance = utils.euclidean_distance(center_cluster1, center_cluster2);
 | 
            
                                                                        
                            
            
                                    
            
            
                | 60 |  |  |                     
 | 
            
                                                                        
                            
            
                                    
            
            
                | 61 |  |  |                 elif (distance_type == 'manhattan'):
 | 
            
                                                                        
                            
            
                                    
            
            
                | 62 |  |  |                     distance = utils.manhattan_distance(center_cluster1, center_cluster2);
 | 
            
                                                                        
                            
            
                                    
            
            
                | 63 |  |  |                     
 | 
            
                                                                        
                            
            
                                    
            
            
                | 64 |  |  |                 elif (distance_type == 'avr-inter'):
 | 
            
                                                                        
                            
            
                                    
            
            
                | 65 |  |  |                     distance = utils.average_inter_cluster_distance(cluster1, cluster2, sample);
 | 
            
                                                                        
                            
            
                                    
            
            
                | 66 |  |  |                 
 | 
            
                                                                        
                            
            
                                    
            
            
                | 67 |  |  |                 elif (distance_type == 'avr-intra'):
 | 
            
                                                                        
                            
            
                                    
            
            
                | 68 |  |  |                     distance = utils.average_intra_cluster_distance(cluster1, cluster2, sample);
 | 
            
                                                                        
                            
            
                                    
            
            
                | 69 |  |  |                 
 | 
            
                                                                        
                            
            
                                    
            
            
                | 70 |  |  |                 elif (distance_type == 'variance'):
 | 
            
                                                                        
                            
            
                                    
            
            
                | 71 |  |  |                     distance = utils.variance_increase_distance(cluster1, cluster2, sample);
 | 
            
                                                                        
                            
            
                                    
            
            
                | 72 |  |  |             
 | 
            
                                                                        
                            
            
                                    
            
            
                | 73 |  |  |             print("\tDistance", distance_type, "from", index_cluster, "to", index_neighbor, "is:", distance);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |         
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  | def display_two_dimensional_cluster_distances(path_sample, amount_clusters):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  |     distances = ['euclidian', 'manhattan', 'avr-inter', 'avr-intra', 'variance'];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |     
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |     ajacency = [ [0] * amount_clusters for i in range(amount_clusters) ];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |     
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  |     sample = utils.read_sample(path_sample);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |     
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |     agglomerative_instance = agglomerative(sample, amount_clusters);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |     agglomerative_instance.process();
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |     
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |     obtained_clusters = agglomerative_instance.get_clusters();
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  |     stage = utils.draw_clusters(sample, obtained_clusters, display_result = False);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |     
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |     for index_cluster in range(len(ajacency)):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |         for index_neighbor_cluster in range(index_cluster + 1, len(ajacency)):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |             if ( (index_cluster == index_neighbor_cluster) or (ajacency[index_cluster][index_neighbor_cluster] is True) ):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |                 continue;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  |             
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |             ajacency[index_cluster][index_neighbor_cluster] = True;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  |             ajacency[index_neighbor_cluster][index_cluster] = True;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |             
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |             cluster1 = obtained_clusters[index_cluster];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |             cluster2 = obtained_clusters[index_neighbor_cluster];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |             
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |             center_cluster1 = utils.centroid(sample, cluster1);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |             center_cluster2 = utils.centroid(sample, cluster2);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |             
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  |             x_maximum, x_minimum, y_maximum, y_minimum = None, None, None, None;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  |             x_index_maximum, y_index_maximum = 1, 1;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  |             
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |             if (center_cluster2[0] > center_cluster1[0]):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |                 x_maximum = center_cluster2[0];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |                 x_minimum = center_cluster1[0];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |                 x_index_maximum = 1;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |             else:
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |                 x_maximum = center_cluster1[0];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |                 x_minimum = center_cluster2[0];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |                 x_index_maximum = -1;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |             
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |             if (center_cluster2[1] > center_cluster1[1]):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |                 y_maximum = center_cluster2[1];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |                 y_minimum = center_cluster1[1];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |                 y_index_maximum = 1;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |             else:
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |                 y_maximum = center_cluster1[1];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |                 y_minimum = center_cluster2[1];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |                 y_index_maximum = -1;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |             
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |             print("Cluster 1:", cluster1, ", center:", center_cluster1);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |             print("Cluster 2:", cluster2, ", center:", center_cluster2);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |             
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |             stage.annotate(s = '', xy = (center_cluster1[0], center_cluster1[1]), xytext = (center_cluster2[0], center_cluster2[1]), arrowprops = dict(arrowstyle = '<->'));
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |             
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |             for index_distance_type in range(len(distances)):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |                 distance = None;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |                 distance_type = distances[index_distance_type];
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |                 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |                 if (distance_type == 'euclidian'):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |                     distance = utils.euclidean_distance(center_cluster1, center_cluster2);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |                     
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |                 elif (distance_type == 'manhattan'):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |                     distance = utils.manhattan_distance(center_cluster1, center_cluster2);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |                     
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |                 elif (distance_type == 'avr-inter'):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |                     distance = utils.average_inter_cluster_distance(cluster1, cluster2, sample);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |                 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |                 elif (distance_type == 'avr-intra'):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |                     distance = utils.average_intra_cluster_distance(cluster1, cluster2, sample);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |                 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |                 elif (distance_type == 'variance'):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |                     distance = utils.variance_increase_distance(cluster1, cluster2, sample);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |                 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |                 print("\tCluster distance -", distance_type, ":", distance);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |                 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |                 x_multiplier = index_distance_type + 3;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |                 if (x_index_maximum < 0):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |                     x_multiplier = len(distances) - index_distance_type + 3;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |                 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |                 y_multiplier = index_distance_type + 3;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |                 if (y_index_maximum < 0):
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |                     y_multiplier = len(distances) - index_distance_type + 3;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |                 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |                 x_text = x_multiplier * (x_maximum - x_minimum) / (len(distances) + 6) + x_minimum;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |                 y_text = y_multiplier * (y_maximum - y_minimum) / (len(distances) + 6) + y_minimum;
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |                 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |                 #print(x_text, y_text, "\n");
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |                 stage.text(x_text, y_text, distance_type + " {:.3f}".format(distance), fontsize = 9, color='blue');
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |     
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |     plt.show();
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  | def display_cluster_distances_simple_sample_01():
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |     display_two_dimensional_cluster_distances(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  | def display_cluster_distances_simple_sample_02():
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  |     display_two_dimensional_cluster_distances(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 3);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  | def display_cluster_distances_simple_sample_03():
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |     display_two_dimensional_cluster_distances(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 4);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  | def print_cluster_distances_simple_sample_07():
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |     cluster_distances(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 2);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  | def print_cluster_distances_simple_sample_08():
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |     cluster_distances(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, 4);
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  | display_cluster_distances_simple_sample_01();
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  | display_cluster_distances_simple_sample_02();
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  | display_cluster_distances_simple_sample_03();
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 |  |  | 
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 |  |  | print_cluster_distances_simple_sample_07();
 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  | print_cluster_distances_simple_sample_08();
 | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 190 |  |  | 
 | 
            
                                                        
            
                                    
            
            
                | 191 |  |  |  |