| Total Complexity | 51 |
| Total Lines | 375 |
| Duplicated Lines | 14.93 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like xmeans often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """! |
||
| 53 | class xmeans: |
||
| 54 | """! |
||
| 55 | @brief Class represents clustering algorithm X-Means. |
||
| 56 | |||
| 57 | Example: |
||
| 58 | @code |
||
| 59 | # sample for cluster analysis (represented by list) |
||
| 60 | sample = read_sample(path_to_sample); |
||
| 61 | |||
| 62 | # create object of X-Means algorithm that uses CCORE for processing |
||
| 63 | # initial centers - optional parameter, if it is None, then random center will be used by the algorithm |
||
| 64 | initial_centers = [ [0.0, 0.5] ]; |
||
| 65 | xmeans_instance = xmeans(sample, initial_centers, ccore = True); |
||
| 66 | |||
| 67 | # run cluster analysis |
||
| 68 | xmeans_instance.process(); |
||
| 69 | |||
| 70 | # obtain results of clustering |
||
| 71 | clusters = xmeans_instance.get_clusters(); |
||
| 72 | |||
| 73 | # display allocated clusters |
||
| 74 | draw_clusters(sample, clusters); |
||
| 75 | @endcode |
||
| 76 | |||
| 77 | """ |
||
| 78 | |||
| 79 | def __init__(self, data, initial_centers = None, kmax = 20, tolerance = 0.025, criterion = splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore = False): |
||
| 80 | """! |
||
| 81 | @brief Constructor of clustering algorithm X-Means. |
||
| 82 | |||
| 83 | @param[in] data (list): Input data that is presented as list of points (objects), each point should be represented by list or tuple. |
||
| 84 | @param[in] initial_centers (list): Initial coordinates of centers of clusters that are represented by list: [center1, center2, ...], |
||
| 85 | if it is not specified then X-Means starts from the random center. |
||
| 86 | @param[in] kmax (uint): Maximum number of clusters that can be allocated. |
||
| 87 | @param[in] tolerance (double): Stop condition for each iteration: if maximum value of change of centers of clusters is less than tolerance than algorithm will stop processing. |
||
| 88 | @param[in] criterion (splitting_type): Type of splitting creation. |
||
| 89 | @param[in] ccore (bool): Defines should be CCORE (C++ pyclustering library) used instead of Python code or not. |
||
| 90 | |||
| 91 | """ |
||
| 92 | |||
| 93 | self.__pointer_data = data; |
||
| 94 | self.__clusters = []; |
||
| 95 | |||
| 96 | if (initial_centers is not None): |
||
| 97 | self.__centers = initial_centers[:]; |
||
| 98 | else: |
||
| 99 | self.__centers = [ [random.random() for _ in range(len(data[0])) ] ]; |
||
| 100 | |||
| 101 | self.__kmax = kmax; |
||
| 102 | self.__tolerance = tolerance; |
||
| 103 | self.__criterion = criterion; |
||
| 104 | |||
| 105 | self.__ccore = ccore; |
||
| 106 | |||
| 107 | def process(self): |
||
| 108 | """! |
||
| 109 | @brief Performs cluster analysis in line with rules of X-Means algorithm. |
||
| 110 | |||
| 111 | @remark Results of clustering can be obtained using corresponding gets methods. |
||
| 112 | |||
| 113 | @see get_clusters() |
||
| 114 | @see get_centers() |
||
| 115 | |||
| 116 | """ |
||
| 117 | |||
| 118 | if (self.__ccore is True): |
||
| 119 | self.__clusters = wrapper.xmeans(self.__pointer_data, self.__centers, self.__kmax, self.__tolerance); |
||
| 120 | self.__clusters = [ cluster for cluster in self.__clusters if len(cluster) > 0 ]; |
||
| 121 | |||
| 122 | self.__centers = self.__update_centers(self.__clusters); |
||
| 123 | else: |
||
| 124 | self.__clusters = []; |
||
| 125 | while ( len(self.__centers) < self.__kmax ): |
||
| 126 | current_cluster_number = len(self.__centers); |
||
| 127 | |||
| 128 | (self.__clusters, self.__centers) = self.__improve_parameters(self.__centers); |
||
| 129 | allocated_centers = self.__improve_structure(self.__clusters, self.__centers); |
||
| 130 | |||
| 131 | if ( (current_cluster_number == len(allocated_centers)) ): |
||
| 132 | break; |
||
| 133 | else: |
||
| 134 | self.__centers = allocated_centers; |
||
| 135 | |||
| 136 | |||
| 137 | def get_clusters(self): |
||
| 138 | """! |
||
| 139 | @brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data. |
||
| 140 | |||
| 141 | @return (list) List of allocated clusters. |
||
| 142 | |||
| 143 | @see process() |
||
| 144 | @see get_centers() |
||
| 145 | |||
| 146 | """ |
||
| 147 | |||
| 148 | return self.__clusters; |
||
| 149 | |||
| 150 | |||
| 151 | def get_centers(self): |
||
| 152 | """! |
||
| 153 | @brief Returns list of centers for allocated clusters. |
||
| 154 | |||
| 155 | @return (list) List of centers for allocated clusters. |
||
| 156 | |||
| 157 | @see process() |
||
| 158 | @see get_clusters() |
||
| 159 | |||
| 160 | """ |
||
| 161 | |||
| 162 | return self.__centers; |
||
| 163 | |||
| 164 | |||
| 165 | def __improve_parameters(self, centers, available_indexes = None): |
||
| 166 | """! |
||
| 167 | @brief Performs k-means clustering in the specified region. |
||
| 168 | |||
| 169 | @param[in] centers (list): Centers of clusters. |
||
| 170 | @param[in] available_indexes (list): Indexes that defines which points can be used for k-means clustering, if None - then all points are used. |
||
| 171 | |||
| 172 | @return (list) List of allocated clusters, each cluster contains indexes of objects in list of data. |
||
| 173 | |||
| 174 | """ |
||
| 175 | |||
| 176 | changes = numpy.Inf; |
||
| 177 | |||
| 178 | stop_condition = self.__tolerance * self.__tolerance; # Fast solution |
||
| 179 | |||
| 180 | clusters = []; |
||
| 181 | |||
| 182 | while (changes > stop_condition): |
||
| 183 | clusters = self.__update_clusters(centers, available_indexes); |
||
| 184 | clusters = [ cluster for cluster in clusters if len(cluster) > 0 ]; |
||
| 185 | |||
| 186 | updated_centers = self.__update_centers(clusters); |
||
| 187 | |||
| 188 | changes = max([euclidean_distance_sqrt(centers[index], updated_centers[index]) for index in range(len(updated_centers))]); # Fast solution |
||
| 189 | |||
| 190 | centers = updated_centers; |
||
| 191 | |||
| 192 | return (clusters, centers); |
||
| 193 | |||
| 194 | |||
| 195 | def __improve_structure(self, clusters, centers): |
||
| 196 | """! |
||
| 197 | @brief Check for best structure: divides each cluster into two and checks for best results using splitting criterion. |
||
| 198 | |||
| 199 | @param[in] clusters (list): Clusters that have been allocated (each cluster contains indexes of points from data). |
||
| 200 | @param[in] centers (list): Centers of clusters. |
||
| 201 | |||
| 202 | @return (list) Allocated centers for clustering. |
||
| 203 | |||
| 204 | """ |
||
| 205 | |||
| 206 | difference = 0.001; |
||
| 207 | |||
| 208 | allocated_centers = []; |
||
| 209 | |||
| 210 | for index_cluster in range(len(clusters)): |
||
| 211 | # split cluster into two child clusters |
||
| 212 | parent_child_centers = []; |
||
| 213 | parent_child_centers.append(list_math_addition_number(centers[index_cluster], -difference)); |
||
| 214 | parent_child_centers.append(list_math_addition_number(centers[index_cluster], difference)); |
||
| 215 | |||
| 216 | # solve k-means problem for children where data of parent are used. |
||
| 217 | (parent_child_clusters, parent_child_centers) = self.__improve_parameters(parent_child_centers, clusters[index_cluster]); |
||
| 218 | |||
| 219 | # If it's possible to split current data |
||
| 220 | if (len(parent_child_clusters) > 1): |
||
| 221 | # Calculate splitting criterion |
||
| 222 | parent_scores = self.__splitting_criterion([ clusters[index_cluster] ], [ centers[index_cluster] ]); |
||
| 223 | child_scores = self.__splitting_criterion([ parent_child_clusters[0], parent_child_clusters[1] ], parent_child_centers); |
||
| 224 | |||
| 225 | split_require = False; |
||
| 226 | |||
| 227 | # Reallocate number of centers (clusters) in line with scores |
||
| 228 | if (self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): |
||
| 229 | if (parent_scores < child_scores): split_require = True; |
||
| 230 | |||
| 231 | elif (self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): |
||
| 232 | if (parent_scores > child_scores): split_require = True; |
||
| 233 | |||
| 234 | if (split_require is True): |
||
| 235 | allocated_centers.append(parent_child_centers[0]); |
||
| 236 | allocated_centers.append(parent_child_centers[1]); |
||
| 237 | else: |
||
| 238 | allocated_centers.append(centers[index_cluster]); |
||
| 239 | |||
| 240 | |||
| 241 | else: |
||
| 242 | allocated_centers.append(centers[index_cluster]); |
||
| 243 | |||
| 244 | return allocated_centers; |
||
| 245 | |||
| 246 | |||
| 247 | def __splitting_criterion(self, clusters, centers): |
||
| 248 | """! |
||
| 249 | @brief Calculates splitting criterion for input clusters. |
||
| 250 | |||
| 251 | @param[in] clusters (list): Clusters for which splitting criterion should be calculated. |
||
| 252 | @param[in] centers (list): Centers of the clusters. |
||
| 253 | |||
| 254 | @return (double) Returns splitting criterion. High value of splitting cretion means that current structure is much better. |
||
| 255 | |||
| 256 | @see __bayesian_information_criterion(clusters, centers) |
||
| 257 | @see __minimum_noiseless_description_length(clusters, centers) |
||
| 258 | |||
| 259 | """ |
||
| 260 | |||
| 261 | if (self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): |
||
| 262 | return self.__bayesian_information_criterion(clusters, centers); |
||
| 263 | |||
| 264 | elif (self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): |
||
| 265 | return self.__minimum_noiseless_description_length(clusters, centers); |
||
| 266 | |||
| 267 | else: |
||
| 268 | assert 0; |
||
| 269 | |||
| 270 | |||
| 271 | def __minimum_noiseless_description_length(self, clusters, centers): |
||
| 272 | """! |
||
| 273 | @brief Calculates splitting criterion for input clusters using minimum noiseless description length criterion. |
||
| 274 | |||
| 275 | @param[in] clusters (list): Clusters for which splitting criterion should be calculated. |
||
| 276 | @param[in] centers (list): Centers of the clusters. |
||
| 277 | |||
| 278 | @return (double) Returns splitting criterion in line with bayesian information criterion. |
||
| 279 | Low value of splitting cretion means that current structure is much better. |
||
| 280 | |||
| 281 | @see __bayesian_information_criterion(clusters, centers) |
||
| 282 | |||
| 283 | """ |
||
| 284 | |||
| 285 | scores = [0.0] * len(clusters); |
||
| 286 | |||
| 287 | W = 0.0; |
||
| 288 | K = len(clusters); |
||
| 289 | N = 0.0; |
||
| 290 | |||
| 291 | sigma_sqrt = 0.0; |
||
| 292 | |||
| 293 | alpha = 0.9; |
||
| 294 | betta = 0.9; |
||
| 295 | |||
| 296 | for index_cluster in range(0, len(clusters), 1): |
||
| 297 | for index_object in clusters[index_cluster]: |
||
| 298 | delta_vector = list_math_subtraction(self.__pointer_data[index_object], centers[index_cluster]); |
||
| 299 | delta_sqrt = sum(list_math_multiplication(delta_vector, delta_vector)); |
||
| 300 | |||
| 301 | W += delta_sqrt; |
||
| 302 | sigma_sqrt += delta_sqrt; |
||
| 303 | |||
| 304 | N += len(clusters[index_cluster]); |
||
| 305 | |||
| 306 | if (N - K != 0): |
||
| 307 | W /= N; |
||
| 308 | |||
| 309 | sigma_sqrt /= (N - K); |
||
| 310 | sigma = sigma_sqrt ** 0.5; |
||
| 311 | |||
| 312 | for index_cluster in range(0, len(clusters), 1): |
||
| 313 | Kw = (1.0 - K / N) * sigma_sqrt; |
||
| 314 | Ks = ( 2.0 * alpha * sigma / (N ** 0.5) ) + ( (alpha ** 2.0) * sigma_sqrt / N + W - Kw / 2.0 ) ** 0.5; |
||
| 315 | U = W - Kw + 2.0 * (alpha ** 2.0) * sigma_sqrt / N + Ks; |
||
| 316 | |||
| 317 | Z = K * sigma_sqrt / N + U + betta * ( (2.0 * K) ** 0.5 ) * sigma_sqrt / N; |
||
| 318 | |||
| 319 | if (Z == 0.0): |
||
| 320 | scores[index_cluster] = float("inf");
|
||
| 321 | else: |
||
| 322 | scores[index_cluster] = Z; |
||
| 323 | |||
| 324 | else: |
||
| 325 | scores = [float("inf")] * len(clusters);
|
||
| 326 | |||
| 327 | return sum(scores); |
||
| 328 | |||
| 329 | def __bayesian_information_criterion(self, clusters, centers): |
||
| 330 | """! |
||
| 331 | @brief Calculates splitting criterion for input clusters using bayesian information criterion. |
||
| 332 | |||
| 333 | @param[in] clusters (list): Clusters for which splitting criterion should be calculated. |
||
| 334 | @param[in] centers (list): Centers of the clusters. |
||
| 335 | |||
| 336 | @return (double) Splitting criterion in line with bayesian information criterion. |
||
| 337 | High value of splitting cretion means that current structure is much better. |
||
| 338 | |||
| 339 | @see __minimum_noiseless_description_length(clusters, centers) |
||
| 340 | |||
| 341 | """ |
||
| 342 | |||
| 343 | scores = [0.0] * len(clusters) # splitting criterion |
||
| 344 | dimension = len(self.__pointer_data[0]); |
||
| 345 | |||
| 346 | # estimation of the noise variance in the data set |
||
| 347 | sigma = 0.0; |
||
| 348 | K = len(clusters); |
||
| 349 | N = 0.0; |
||
| 350 | |||
| 351 | for index_cluster in range(0, len(clusters), 1): |
||
| 352 | for index_object in clusters[index_cluster]: |
||
| 353 | sigma += (euclidean_distance(self.__pointer_data[index_object], centers[index_cluster])); # It works |
||
| 354 | |||
| 355 | N += len(clusters[index_cluster]); |
||
| 356 | |||
| 357 | if (N - K != 0): |
||
| 358 | sigma /= (N - K); |
||
| 359 | |||
| 360 | # splitting criterion |
||
| 361 | View Code Duplication | for index_cluster in range(0, len(clusters), 1): |
|
| 362 | n = len(clusters[index_cluster]); |
||
| 363 | |||
| 364 | if (sigma > 0.0): |
||
| 365 | scores[index_cluster] = n * math.log(n) - n * math.log(N) - n * math.log(2.0 * numpy.pi) / 2.0 - n * dimension * math.log(sigma) / 2.0 - (n - K) / 2.0; |
||
| 366 | |||
| 367 | return sum(scores); |
||
| 368 | |||
| 369 | |||
| 370 | def __update_clusters(self, centers, available_indexes = None): |
||
| 371 | """! |
||
| 372 | @brief Calculates Euclidean distance to each point from the each cluster. |
||
| 373 | Nearest points are captured by according clusters and as a result clusters are updated. |
||
| 374 | |||
| 375 | @param[in] centers (list): Coordinates of centers of clusters that are represented by list: [center1, center2, ...]. |
||
| 376 | @param[in] available_indexes (list): Indexes that defines which points can be used from imput data, if None - then all points are used. |
||
| 377 | |||
| 378 | @return (list) Updated clusters. |
||
| 379 | |||
| 380 | """ |
||
| 381 | |||
| 382 | bypass = None; |
||
| 383 | if (available_indexes is None): |
||
| 384 | bypass = range(len(self.__pointer_data)); |
||
| 385 | else: |
||
| 386 | bypass = available_indexes; |
||
| 387 | |||
| 388 | clusters = [[] for i in range(len(centers))]; |
||
| 389 | for index_point in bypass: |
||
| 390 | index_optim = -1; |
||
| 391 | dist_optim = 0.0; |
||
| 392 | |||
| 393 | for index in range(len(centers)): |
||
| 394 | # dist = euclidean_distance(data[index_point], centers[index]); # Slow solution |
||
| 395 | dist = euclidean_distance_sqrt(self.__pointer_data[index_point], centers[index]); # Fast solution |
||
| 396 | |||
| 397 | View Code Duplication | if ( (dist < dist_optim) or (index is 0)): |
|
| 398 | index_optim = index; |
||
| 399 | dist_optim = dist; |
||
| 400 | |||
| 401 | clusters[index_optim].append(index_point); |
||
| 402 | |||
| 403 | return clusters; |
||
| 404 | |||
| 405 | |||
| 406 | def __update_centers(self, clusters): |
||
| 407 | """! |
||
| 408 | @brief Updates centers of clusters in line with contained objects. |
||
| 409 | |||
| 410 | @param[in] clusters (list): Clusters that contain indexes of objects from data. |
||
| 411 | |||
| 412 | @return (list) Updated centers. |
||
| 413 | |||
| 414 | """ |
||
| 415 | |||
| 416 | centers = [[] for i in range(len(clusters))]; |
||
| 417 | dimension = len(self.__pointer_data[0]) |
||
| 418 | |||
| 419 | for index in range(len(clusters)): |
||
| 420 | point_sum = [0.0] * dimension; |
||
| 421 | |||
| 422 | for index_point in clusters[index]: |
||
| 423 | point_sum = list_math_addition(point_sum, self.__pointer_data[index_point]); |
||
| 424 | |||
| 425 | centers[index] = list_math_division_number(point_sum, len(clusters[index])); |
||
| 426 | |||
| 427 | return centers; |
||
| 428 |
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.pyfiles in your module folders. Make sure that you place one file in each sub-folder.