1
|
|
|
"""!
|
2
|
|
|
|
3
|
|
|
@brief Data Structure: KD-Tree
|
4
|
|
|
@details Implementation based on paper @cite book::the_design_and_analysis.
|
5
|
|
|
|
6
|
|
|
@authors Andrei Novikov ([email protected])
|
7
|
|
|
@date 2014-2018
|
8
|
|
|
@copyright GNU Public License
|
9
|
|
|
|
10
|
|
|
@cond GNU_PUBLIC_LICENSE
|
11
|
|
|
PyClustering is free software: you can redistribute it and/or modify
|
12
|
|
|
it under the terms of the GNU General Public License as published by
|
13
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
14
|
|
|
(at your option) any later version.
|
15
|
|
|
|
16
|
|
|
PyClustering is distributed in the hope that it will be useful,
|
17
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
18
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
19
|
|
|
GNU General Public License for more details.
|
20
|
|
|
|
21
|
|
|
You should have received a copy of the GNU General Public License
|
22
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
23
|
|
|
@endcond
|
24
|
|
|
|
25
|
|
|
"""
|
26
|
|
|
|
27
|
|
|
|
28
|
|
|
import numpy
|
|
|
|
|
29
|
|
|
|
30
|
|
|
from pyclustering.utils import euclidean_distance_square
|
31
|
|
|
|
32
|
|
|
|
33
|
|
|
class kdtree_text_visualizer:
|
34
|
|
|
"""!
|
35
|
|
|
@brief KD-tree text visualizer that provides service to diplay tree structure using text representation.
|
36
|
|
|
|
37
|
|
|
"""
|
38
|
|
|
|
39
|
|
|
def __init__(self, kdtree_instance):
|
40
|
|
|
"""!
|
41
|
|
|
@brief Initialize KD-tree text visualizer.
|
42
|
|
|
|
43
|
|
|
@param[in] kdtree_instance (kdtree): Instance of KD-Tree that should be visualized.
|
44
|
|
|
|
45
|
|
|
"""
|
46
|
|
|
self.__kdtree_instance = kdtree_instance;
|
47
|
|
|
|
48
|
|
|
self.__tree_level_text = "";
|
49
|
|
|
self.__tree_text = "";
|
50
|
|
|
|
51
|
|
|
|
52
|
|
|
def visualize(self, display=True):
|
53
|
|
|
"""!
|
54
|
|
|
@brief Display KD-tree to console.
|
55
|
|
|
|
56
|
|
|
@param[in] display (bool): If 'True' then tree will be shown in console.
|
57
|
|
|
|
58
|
|
|
@return (string) Text representation of the KD-tree.
|
59
|
|
|
|
60
|
|
|
"""
|
61
|
|
|
|
62
|
|
|
nodes = self.__get_nodes();
|
63
|
|
|
level = nodes[0];
|
64
|
|
|
|
65
|
|
|
for node in nodes:
|
|
|
|
|
66
|
|
|
self.__print_node(level, node)
|
67
|
|
|
|
68
|
|
|
self.__tree_text += self.__tree_level_text;
|
69
|
|
|
if (display is True):
|
70
|
|
|
print(self.__tree_text);
|
71
|
|
|
|
72
|
|
|
return self.__tree_text;
|
73
|
|
|
|
74
|
|
|
|
75
|
|
|
def __print_node(self, level, node):
|
|
|
|
|
76
|
|
|
if (level == node[0]):
|
77
|
|
|
self.__tree_level_text += str(node[1]) + "\t";
|
78
|
|
|
|
79
|
|
|
else:
|
80
|
|
|
self.__tree_text += self.__tree_level_text + "\n";
|
81
|
|
|
level = node[0];
|
82
|
|
|
self.__tree_level_text = str(node[1]) + "\t";
|
83
|
|
|
|
84
|
|
|
|
85
|
|
|
def __get_nodes(self):
|
86
|
|
|
nodes = self.__kdtree_instance.traverse();
|
87
|
|
|
if (nodes == []):
|
88
|
|
|
return;
|
89
|
|
|
|
90
|
|
|
nodes.sort(key = lambda item: item[0]);
|
91
|
|
|
return nodes;
|
92
|
|
|
|
93
|
|
|
|
94
|
|
|
|
95
|
|
|
class node:
|
96
|
|
|
"""!
|
97
|
|
|
@brief Represents node of KD-Tree.
|
98
|
|
|
|
99
|
|
|
"""
|
100
|
|
|
|
101
|
|
|
def __init__(self, data = None, payload = None, left = None, right = None, disc = None, parent = None):
|
102
|
|
|
"""!
|
103
|
|
|
@brief
|
104
|
|
|
|
105
|
|
|
@param[in] data (list): Data point that is presented as list of coodinates.
|
106
|
|
|
@param[in] payload (*): Payload of node (pointer to essense that is attached to this node).
|
107
|
|
|
@param[in] left (node): Node of KD-Tree that is represented left successor.
|
108
|
|
|
@param[in] right (node): Node of KD-Tree that is represented right successor.
|
109
|
|
|
@param[in] disc (uint): Index of dimension of that node.
|
110
|
|
|
@param[in] parent (node): Node of KD-Tree that is represented parent.
|
111
|
|
|
|
112
|
|
|
"""
|
113
|
|
|
|
114
|
|
|
## Data point that is presented as list of coodinates.
|
115
|
|
|
self.data = data;
|
116
|
|
|
|
117
|
|
|
## Payload of node that can be used by user for storing specific information in the node.
|
118
|
|
|
self.payload = payload;
|
119
|
|
|
|
120
|
|
|
## Left node successor of the node.
|
121
|
|
|
self.left = left;
|
122
|
|
|
|
123
|
|
|
## Right node successor of the node.
|
124
|
|
|
self.right = right;
|
125
|
|
|
|
126
|
|
|
## Index of dimension.
|
127
|
|
|
self.disc = disc;
|
128
|
|
|
|
129
|
|
|
## Parent node of the node.
|
130
|
|
|
self.parent = parent;
|
131
|
|
|
|
132
|
|
|
|
133
|
|
|
def __repr__(self):
|
134
|
|
|
"""!
|
135
|
|
|
@return (string) Default representation of the node.
|
136
|
|
|
|
137
|
|
|
"""
|
138
|
|
|
left = None;
|
139
|
|
|
right = None;
|
140
|
|
|
|
141
|
|
|
if (self.left is not None):
|
142
|
|
|
left = self.left.data;
|
143
|
|
|
|
144
|
|
|
if (self.right is not None):
|
145
|
|
|
right = self.right.data;
|
146
|
|
|
|
147
|
|
|
return "(%s: [L:'%s', R:'%s'])" % (self.data, left, right);
|
148
|
|
|
|
149
|
|
|
def __str__(self):
|
150
|
|
|
"""!
|
151
|
|
|
@return (string) String representation of the node.
|
152
|
|
|
|
153
|
|
|
"""
|
154
|
|
|
return self.__repr__();
|
155
|
|
|
|
156
|
|
|
|
157
|
|
|
class kdtree:
|
158
|
|
|
"""!
|
159
|
|
|
@brief Represents KD Tree that is a space-partitioning data structure for organizing points in a k-dimensional space.
|
160
|
|
|
@details In the term k-d tree, k denotes the dimensionality of the space being represented. Each data point is represented
|
161
|
|
|
as a node in the k-d tree in the form of a record of type node.
|
162
|
|
|
|
163
|
|
|
Examples:
|
164
|
|
|
@code
|
165
|
|
|
# Import required modules
|
166
|
|
|
from pyclustering.samples.definitions import SIMPLE_SAMPLES;
|
167
|
|
|
from pyclustering.container.kdtree import kdtree;
|
168
|
|
|
from pyclustering.utils import read_sample;
|
169
|
|
|
|
170
|
|
|
# Read data from text file
|
171
|
|
|
sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3);
|
172
|
|
|
|
173
|
|
|
# Create instance of KD-tree and initialize (fill) it by read data.
|
174
|
|
|
tree_instance = kdtree(sample);
|
175
|
|
|
|
176
|
|
|
# Search for nearest point
|
177
|
|
|
search_distance = 0.3;
|
178
|
|
|
nearest_node = tree_instance.find_nearest_dist_node([1.12, 4.31], search_distance);
|
179
|
|
|
|
180
|
|
|
# Search for nearest point in radius 0.3
|
181
|
|
|
nearest_nodes = tree_instance.find_nearest_dist_nodes([1.12, 4.31], search_distance);
|
182
|
|
|
print("Nearest nodes:", nearest_nodes);
|
183
|
|
|
@endcode
|
184
|
|
|
|
185
|
|
|
"""
|
186
|
|
|
|
187
|
|
|
def __init__(self, data_list = None, payload_list = None):
|
188
|
|
|
"""!
|
189
|
|
|
@brief Create kd-tree from list of points and from according list of payloads.
|
190
|
|
|
@details If lists were not specified then empty kd-tree will be created.
|
191
|
|
|
|
192
|
|
|
@param[in] data_list (list): Insert points from the list to created KD tree.
|
193
|
|
|
@param[in] payload_list (list): Insert payload from the list to created KD tree, length should be equal to length of data_list if it is specified.
|
194
|
|
|
|
195
|
|
|
"""
|
196
|
|
|
|
197
|
|
|
self.__root = None
|
198
|
|
|
self.__dimension = None
|
199
|
|
|
self.__point_comparator = None
|
200
|
|
|
|
201
|
|
|
self.__fill_tree(data_list, payload_list)
|
202
|
|
|
|
203
|
|
|
|
204
|
|
|
def insert(self, point, payload):
|
205
|
|
|
"""!
|
206
|
|
|
@brief Insert new point with payload to kd-tree.
|
207
|
|
|
|
208
|
|
|
@param[in] point (list): Coordinates of the point of inserted node.
|
209
|
|
|
@param[in] payload (any-type): Payload of inserted node. It can be identificator of the node or
|
210
|
|
|
some useful payload that belongs to the point.
|
211
|
|
|
|
212
|
|
|
@return (node) Inserted node to the kd-tree.
|
213
|
|
|
|
214
|
|
|
"""
|
215
|
|
|
|
216
|
|
|
if self.__root is None:
|
217
|
|
|
self.__dimension = len(point)
|
218
|
|
|
self.__root = node(point, payload, None, None, 0)
|
219
|
|
|
self.__point_comparator = self.__create_point_comparator(type(point))
|
220
|
|
|
return self.__root
|
221
|
|
|
|
222
|
|
|
cur_node = self.__root
|
223
|
|
|
|
224
|
|
|
while True:
|
225
|
|
|
if cur_node.data[cur_node.disc] <= point[cur_node.disc]:
|
226
|
|
|
# If new node is greater or equal than current node then check right leaf
|
227
|
|
|
if cur_node.right is None:
|
228
|
|
|
discriminator = cur_node.disc + 1;
|
229
|
|
|
if discriminator >= self.__dimension:
|
230
|
|
|
discriminator = 0;
|
231
|
|
|
|
232
|
|
|
cur_node.right = node(point, payload, None, None, discriminator, cur_node);
|
233
|
|
|
return cur_node.right;
|
234
|
|
|
else:
|
235
|
|
|
cur_node = cur_node.right;
|
236
|
|
|
|
237
|
|
|
else:
|
238
|
|
|
# If new node is less than current then check left leaf
|
239
|
|
|
if cur_node.left is None:
|
240
|
|
|
discriminator = cur_node.disc + 1;
|
241
|
|
|
if discriminator >= self.__dimension:
|
242
|
|
|
discriminator = 0;
|
243
|
|
|
|
244
|
|
|
cur_node.left = node(point, payload, None, None, discriminator, cur_node);
|
245
|
|
|
return cur_node.left;
|
246
|
|
|
else:
|
247
|
|
|
cur_node = cur_node.left;
|
248
|
|
|
|
249
|
|
|
|
250
|
|
|
def remove(self, point, **kwargs):
|
251
|
|
|
"""!
|
252
|
|
|
@brief Remove specified point from kd-tree.
|
253
|
|
|
@details It removes the first found node that satisfy to the input parameters. Make sure that
|
254
|
|
|
pair (point, payload) is unique for each node, othewise the first found is removed.
|
255
|
|
|
|
256
|
|
|
@param[in] point (list): Coordinates of the point of removed node.
|
257
|
|
|
@param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'payload').
|
258
|
|
|
|
259
|
|
|
<b>Keyword Args:</b><br>
|
260
|
|
|
- payload (any): Payload of the node that should be removed.
|
261
|
|
|
|
262
|
|
|
@return (node) Root if node has been successfully removed, otherwise None.
|
263
|
|
|
|
264
|
|
|
"""
|
265
|
|
|
|
266
|
|
|
# Get required node
|
267
|
|
|
node_for_remove = None;
|
268
|
|
|
if 'payload' in kwargs:
|
269
|
|
|
node_for_remove = self.find_node_with_payload(point, kwargs['payload'], None);
|
270
|
|
|
else:
|
271
|
|
|
node_for_remove = self.find_node(point, None);
|
272
|
|
|
|
273
|
|
|
if node_for_remove is None:
|
274
|
|
|
return None;
|
275
|
|
|
|
276
|
|
|
parent = node_for_remove.parent;
|
277
|
|
|
minimal_node = self.__recursive_remove(node_for_remove);
|
278
|
|
|
if parent is None:
|
279
|
|
|
self.__root = minimal_node;
|
280
|
|
|
|
281
|
|
|
# If all k-d tree was destroyed
|
282
|
|
|
if minimal_node is not None:
|
283
|
|
|
minimal_node.parent = None;
|
284
|
|
|
else:
|
285
|
|
|
if parent.left is node_for_remove:
|
286
|
|
|
parent.left = minimal_node;
|
287
|
|
|
elif parent.right is node_for_remove:
|
288
|
|
|
parent.right = minimal_node;
|
289
|
|
|
|
290
|
|
|
return self.__root;
|
291
|
|
|
|
292
|
|
|
|
293
|
|
|
def __recursive_remove(self, node_removed):
|
294
|
|
|
"""!
|
295
|
|
|
@brief Delete node and return root of subtree.
|
296
|
|
|
|
297
|
|
|
@param[in] node_removed (node): Node that should be removed.
|
298
|
|
|
|
299
|
|
|
@return (node) Minimal node in line with coordinate that is defined by descriminator.
|
300
|
|
|
|
301
|
|
|
"""
|
302
|
|
|
|
303
|
|
|
# Check if it is leaf
|
304
|
|
|
if (node_removed.right is None) and (node_removed.left is None):
|
305
|
|
|
return None;
|
306
|
|
|
|
307
|
|
|
discriminator = node_removed.disc;
|
308
|
|
|
|
309
|
|
|
# Check if only left branch exist
|
310
|
|
|
if node_removed.right is None:
|
311
|
|
|
node_removed.right = node_removed.left;
|
312
|
|
|
node_removed.left = None;
|
313
|
|
|
|
314
|
|
|
# Find minimal node in line with coordinate that is defined by discriminator
|
315
|
|
|
minimal_node = self.find_minimal_node(node_removed.right, discriminator);
|
316
|
|
|
parent = minimal_node.parent;
|
317
|
|
|
|
318
|
|
|
if parent.left is minimal_node:
|
319
|
|
|
parent.left = self.__recursive_remove(minimal_node);
|
320
|
|
|
elif parent.right is minimal_node:
|
321
|
|
|
parent.right = self.__recursive_remove(minimal_node);
|
322
|
|
|
|
323
|
|
|
minimal_node.parent = node_removed.parent;
|
324
|
|
|
minimal_node.disc = node_removed.disc;
|
325
|
|
|
minimal_node.right = node_removed.right;
|
326
|
|
|
minimal_node.left = node_removed.left;
|
327
|
|
|
|
328
|
|
|
# Update parent for successors of previous parent.
|
329
|
|
|
if minimal_node.right is not None:
|
330
|
|
|
minimal_node.right.parent = minimal_node;
|
331
|
|
|
|
332
|
|
|
if minimal_node.left is not None:
|
333
|
|
|
minimal_node.left.parent = minimal_node;
|
334
|
|
|
|
335
|
|
|
return minimal_node;
|
336
|
|
|
|
337
|
|
|
|
338
|
|
|
def find_minimal_node(self, node_head, discriminator):
|
339
|
|
|
"""!
|
340
|
|
|
@brief Find minimal node in line with coordinate that is defined by discriminator.
|
341
|
|
|
|
342
|
|
|
@param[in] node_head (node): Node of KD tree from that search should be started.
|
343
|
|
|
@param[in] discriminator (uint): Coordinate number that is used for comparison.
|
344
|
|
|
|
345
|
|
|
@return (node) Minimal node in line with descriminator from the specified node.
|
346
|
|
|
|
347
|
|
|
"""
|
348
|
|
|
|
349
|
|
|
min_key = lambda cur_node: cur_node.data[discriminator];
|
350
|
|
|
stack = [];
|
351
|
|
|
candidates = [];
|
352
|
|
|
isFinished = False;
|
353
|
|
|
while isFinished is False:
|
354
|
|
|
if node_head is not None:
|
355
|
|
|
stack.append(node_head);
|
356
|
|
|
node_head = node_head.left;
|
357
|
|
|
else:
|
358
|
|
|
if len(stack) != 0:
|
359
|
|
|
node_head = stack.pop();
|
360
|
|
|
candidates.append(node_head);
|
361
|
|
|
node_head = node_head.right;
|
362
|
|
|
else:
|
363
|
|
|
isFinished = True;
|
364
|
|
|
|
365
|
|
|
return min(candidates, key = min_key);
|
366
|
|
|
|
367
|
|
|
|
368
|
|
|
def __fill_tree(self, data_list, payload_list):
|
369
|
|
|
"""!
|
370
|
|
|
@brief Fill KD-tree by specified data and create point comparator in line with data type.
|
371
|
|
|
|
372
|
|
|
@param[in] data_list (array_like): Data points that should be inserted to the tree.
|
373
|
|
|
@param[in] payload_list (array_like): Data point payloads that follows data points inserted to the tree.
|
374
|
|
|
|
375
|
|
|
"""
|
376
|
|
|
if data_list is None or len(data_list) == 0:
|
377
|
|
|
return; # Just return from here, tree can be filled by insert method later
|
378
|
|
|
|
379
|
|
|
if payload_list is None:
|
380
|
|
|
# Case when payload is not specified.
|
381
|
|
|
for index in range(0, len(data_list)):
|
382
|
|
|
self.insert(data_list[index], None);
|
383
|
|
|
else:
|
384
|
|
|
# Case when payload is specified.
|
385
|
|
|
for index in range(0, len(data_list)):
|
386
|
|
|
self.insert(data_list[index], payload_list[index]);
|
387
|
|
|
|
388
|
|
|
self.__point_comparator = self.__create_point_comparator(type(self.__root.data))
|
389
|
|
|
|
390
|
|
|
|
391
|
|
|
def __create_point_comparator(self, type_node):
|
392
|
|
|
"""!
|
393
|
|
|
@brief Create point comparator.
|
394
|
|
|
@details In case of numpy.array specific comparator is required.
|
395
|
|
|
|
396
|
|
|
@return (callable) Callable point comparator to compare to points.
|
397
|
|
|
|
398
|
|
|
"""
|
399
|
|
|
if type_node == numpy.ndarray:
|
400
|
|
|
return lambda obj1, obj2: numpy.array_equal(obj1, obj2)
|
401
|
|
|
|
402
|
|
|
return lambda obj1, obj2: obj1 == obj2
|
403
|
|
|
|
404
|
|
|
|
405
|
|
|
def __find_node_by_rule(self, point, search_rule, cur_node):
|
406
|
|
|
"""!
|
407
|
|
|
@brief Search node that satisfy to parameters in search rule.
|
408
|
|
|
@details If node with specified parameters does not exist then None will be returned,
|
409
|
|
|
otherwise required node will be returned.
|
410
|
|
|
|
411
|
|
|
@param[in] point (list): Coordinates of the point whose node should be found.
|
412
|
|
|
@param[in] search_rule (lambda): Rule that is called to check whether node satisfies to search parameter.
|
413
|
|
|
@param[in] cur_node (node): Node from which search should be started.
|
414
|
|
|
|
415
|
|
|
@return (node) Node if it satisfies to input parameters, otherwise it return None.
|
416
|
|
|
|
417
|
|
|
"""
|
418
|
|
|
|
419
|
|
|
req_node = None;
|
420
|
|
|
|
421
|
|
|
if cur_node is None:
|
422
|
|
|
cur_node = self.__root;
|
423
|
|
|
|
424
|
|
|
while cur_node:
|
425
|
|
|
if cur_node.data[cur_node.disc] <= point[cur_node.disc]:
|
426
|
|
|
# Check if it's required node
|
427
|
|
|
if search_rule(cur_node):
|
428
|
|
|
req_node = cur_node;
|
429
|
|
|
break;
|
430
|
|
|
|
431
|
|
|
cur_node = cur_node.right;
|
432
|
|
|
|
433
|
|
|
else:
|
434
|
|
|
cur_node = cur_node.left;
|
435
|
|
|
|
436
|
|
|
return req_node;
|
437
|
|
|
|
438
|
|
|
|
439
|
|
|
def find_node_with_payload(self, point, payload, cur_node = None):
|
|
|
|
|
440
|
|
|
"""!
|
441
|
|
|
@brief Find node with specified coordinates and payload.
|
442
|
|
|
@details If node with specified parameters does not exist then None will be returned,
|
443
|
|
|
otherwise required node will be returned.
|
444
|
|
|
|
445
|
|
|
@param[in] point (list): Coordinates of the point whose node should be found.
|
446
|
|
|
@param[in] payload (any): Payload of the node that is searched in the tree.
|
447
|
|
|
@param[in] cur_node (node): Node from which search should be started.
|
448
|
|
|
|
449
|
|
|
@return (node) Node if it satisfies to input parameters, otherwise it return None.
|
450
|
|
|
|
451
|
|
|
"""
|
452
|
|
|
|
453
|
|
|
rule_search = lambda node, point=point, payload=payload: self.__point_comparator(node.data, point) and node.payload == payload;
|
454
|
|
|
return self.__find_node_by_rule(point, rule_search, cur_node);
|
455
|
|
|
|
456
|
|
|
|
457
|
|
|
def find_node(self, point, cur_node = None):
|
458
|
|
|
"""!
|
459
|
|
|
@brief Find node with coordinates that are defined by specified point.
|
460
|
|
|
@details If node with specified parameters does not exist then None will be returned,
|
461
|
|
|
otherwise required node will be returned.
|
462
|
|
|
|
463
|
|
|
@param[in] point (list): Coordinates of the point whose node should be found.
|
464
|
|
|
@param[in] cur_node (node): Node from which search should be started.
|
465
|
|
|
|
466
|
|
|
@return (node) Node if it satisfies to input parameters, otherwise it return None.
|
467
|
|
|
|
468
|
|
|
"""
|
469
|
|
|
|
470
|
|
|
rule_search = lambda node, point=point: self.__point_comparator(node.data, point);
|
471
|
|
|
return self.__find_node_by_rule(point, rule_search, cur_node);
|
472
|
|
|
|
473
|
|
|
|
474
|
|
|
def find_nearest_dist_node(self, point, distance, retdistance = False):
|
475
|
|
|
"""!
|
476
|
|
|
@brief Find nearest neighbor in area with radius = distance.
|
477
|
|
|
|
478
|
|
|
@param[in] point (list): Maximum distance where neighbors are searched.
|
479
|
|
|
@param[in] distance (double): Maximum distance where neighbors are searched.
|
480
|
|
|
@param[in] retdistance (bool): If True - returns neighbors with distances to them, otherwise only neighbors is returned.
|
481
|
|
|
|
482
|
|
|
@return (node|list) Nearest neighbor if 'retdistance' is False and list with two elements [node, distance] if 'retdistance' is True,
|
483
|
|
|
where the first element is pointer to node and the second element is distance to it.
|
484
|
|
|
|
485
|
|
|
"""
|
486
|
|
|
|
487
|
|
|
best_nodes = self.find_nearest_dist_nodes(point, distance);
|
488
|
|
|
|
489
|
|
|
if best_nodes == []:
|
490
|
|
|
return None;
|
491
|
|
|
|
492
|
|
|
nearest = min(best_nodes, key = lambda item: item[0]);
|
493
|
|
|
|
494
|
|
|
if retdistance is True:
|
495
|
|
|
return nearest;
|
496
|
|
|
else:
|
497
|
|
|
return nearest[1];
|
498
|
|
|
|
499
|
|
|
|
500
|
|
|
def find_nearest_dist_nodes(self, point, distance):
|
501
|
|
|
"""!
|
502
|
|
|
@brief Find neighbors that are located in area that is covered by specified distance.
|
503
|
|
|
|
504
|
|
|
@param[in] point (list): Coordinates that is considered as centroind for searching.
|
505
|
|
|
@param[in] distance (double): Distance from the center where seaching is performed.
|
506
|
|
|
|
507
|
|
|
@return (list) Neighbors in area that is specified by point (center) and distance (radius).
|
508
|
|
|
|
509
|
|
|
"""
|
510
|
|
|
|
511
|
|
|
best_nodes = [];
|
512
|
|
|
if self.__root is not None:
|
513
|
|
|
self.__recursive_nearest_nodes(point, distance, distance ** 2, self.__root, best_nodes);
|
514
|
|
|
|
515
|
|
|
return best_nodes;
|
516
|
|
|
|
517
|
|
|
|
518
|
|
|
def __recursive_nearest_nodes(self, point, distance, sqrt_distance, node_head, best_nodes):
|
519
|
|
|
"""!
|
520
|
|
|
@brief Returns list of neighbors such as tuple (distance, node) that is located in area that is covered by distance.
|
521
|
|
|
|
522
|
|
|
@param[in] point (list): Coordinates that is considered as centroind for searching
|
523
|
|
|
@param[in] distance (double): Distance from the center where seaching is performed.
|
524
|
|
|
@param[in] sqrt_distance (double): Square distance from the center where searching is performed.
|
525
|
|
|
@param[in] node_head (node): Node from that searching is performed.
|
526
|
|
|
@param[in|out] best_nodes (list): List of founded nodes.
|
527
|
|
|
|
528
|
|
|
"""
|
529
|
|
|
|
530
|
|
|
if node_head.right is not None:
|
531
|
|
|
minimum = node_head.data[node_head.disc] - distance;
|
532
|
|
|
if point[node_head.disc] >= minimum:
|
533
|
|
|
self.__recursive_nearest_nodes(point, distance, sqrt_distance, node_head.right, best_nodes);
|
534
|
|
|
|
535
|
|
|
if node_head.left is not None:
|
536
|
|
|
maximum = node_head.data[node_head.disc] + distance;
|
537
|
|
|
if point[node_head.disc] < maximum:
|
538
|
|
|
self.__recursive_nearest_nodes(point, distance, sqrt_distance, node_head.left, best_nodes);
|
539
|
|
|
|
540
|
|
|
candidate_distance = euclidean_distance_square(point, node_head.data);
|
541
|
|
|
if candidate_distance <= sqrt_distance:
|
542
|
|
|
best_nodes.append( (candidate_distance, node_head) );
|
543
|
|
|
|
544
|
|
|
|
545
|
|
|
def children(self, node_parent):
|
546
|
|
|
"""!
|
547
|
|
|
@brief Returns list of children of node.
|
548
|
|
|
|
549
|
|
|
@param[in] node_parent (node): Node whose children are required.
|
550
|
|
|
|
551
|
|
|
@return (list) Children of node. If node haven't got any child then None is returned.
|
552
|
|
|
|
553
|
|
|
"""
|
554
|
|
|
|
555
|
|
|
if node_parent.left is not None:
|
556
|
|
|
yield node_parent.left;
|
557
|
|
|
if node_parent.right is not None:
|
558
|
|
|
yield node_parent.right;
|
559
|
|
|
|
560
|
|
|
|
561
|
|
|
def traverse(self, start_node = None, level = None):
|
562
|
|
|
"""!
|
563
|
|
|
@brief Traverses all nodes of subtree that is defined by node specified in input parameter.
|
564
|
|
|
|
565
|
|
|
@param[in] start_node (node): Node from that travering of subtree is performed.
|
566
|
|
|
@param[in, out] level (uint): Should be ignored by application.
|
567
|
|
|
|
568
|
|
|
@return (list) All nodes of the subtree.
|
569
|
|
|
|
570
|
|
|
"""
|
571
|
|
|
|
572
|
|
|
if start_node is None:
|
573
|
|
|
start_node = self.__root;
|
574
|
|
|
level = 0;
|
575
|
|
|
|
576
|
|
|
if start_node is None:
|
577
|
|
|
return [];
|
578
|
|
|
|
579
|
|
|
items = [ (level, start_node) ];
|
580
|
|
|
for child in self.children(start_node):
|
581
|
|
|
if child is not None:
|
582
|
|
|
items += self.traverse(child, level + 1);
|
583
|
|
|
|
584
|
|
|
return items;
|
585
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.