|
1
|
|
|
"""!
|
|
2
|
|
|
|
|
3
|
|
|
@brief Cluster analysis algorithm: SYNC-SOM
|
|
4
|
|
|
@details Based on article description:
|
|
5
|
|
|
- A.Novikov, E.Benderskaya. SYNC-SOM Double-layer Oscillatory Network for Cluster Analysis. 2014.
|
|
6
|
|
|
|
|
7
|
|
|
@authors Andrei Novikov ([email protected])
|
|
8
|
|
|
@date 2014-2016
|
|
9
|
|
|
@copyright GNU Public License
|
|
10
|
|
|
|
|
11
|
|
|
@cond GNU_PUBLIC_LICENSE
|
|
12
|
|
|
PyClustering is free software: you can redistribute it and/or modify
|
|
13
|
|
|
it under the terms of the GNU General Public License as published by
|
|
14
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
15
|
|
|
(at your option) any later version.
|
|
16
|
|
|
|
|
17
|
|
|
PyClustering is distributed in the hope that it will be useful,
|
|
18
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
19
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
20
|
|
|
GNU General Public License for more details.
|
|
21
|
|
|
|
|
22
|
|
|
You should have received a copy of the GNU General Public License
|
|
23
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
24
|
|
|
@endcond
|
|
25
|
|
|
|
|
26
|
|
|
"""
|
|
27
|
|
|
|
|
28
|
|
|
from pyclustering.nnet.som import som, type_conn;
|
|
29
|
|
|
from pyclustering.nnet import initial_type;
|
|
30
|
|
|
|
|
31
|
|
|
from pyclustering.cluster.syncnet import syncnet;
|
|
32
|
|
|
|
|
33
|
|
|
from pyclustering.utils import euclidean_distance_sqrt;
|
|
34
|
|
|
|
|
35
|
|
|
|
|
36
|
|
|
class syncsom:
|
|
37
|
|
|
"""!
|
|
38
|
|
|
@brief Class represents clustering algorithm SYNC-SOM. SYNC-SOM is bio-inspired algorithm that is based on oscillatory network
|
|
39
|
|
|
that uses self-organized feature map as the first layer.
|
|
40
|
|
|
|
|
41
|
|
|
Example:
|
|
42
|
|
|
@code
|
|
43
|
|
|
# read sample for clustering
|
|
44
|
|
|
sample = read_sample(file);
|
|
45
|
|
|
|
|
46
|
|
|
# create oscillatory network for cluster analysis where the first layer has
|
|
47
|
|
|
# size 10x10 and connectivity radius for objects 1.0.
|
|
48
|
|
|
network = syncsom(sample, 10, 10, 1.0);
|
|
49
|
|
|
|
|
50
|
|
|
# simulate network (perform cluster analysis) and collect output dynamic
|
|
51
|
|
|
(dyn_time, dyn_phase) = network.process(True, 0.998);
|
|
52
|
|
|
|
|
53
|
|
|
# obtain encoded clusters
|
|
54
|
|
|
encoded_clusters = network.get_som_clusters();
|
|
55
|
|
|
|
|
56
|
|
|
# obtain real clusters
|
|
57
|
|
|
clusters = network.get_clusters();
|
|
58
|
|
|
|
|
59
|
|
|
# show the first layer of the network
|
|
60
|
|
|
network.show_som_layer();
|
|
61
|
|
|
|
|
62
|
|
|
# show the second layer of the network
|
|
63
|
|
|
network.show_sync_layer();
|
|
64
|
|
|
@endcode
|
|
65
|
|
|
|
|
66
|
|
|
"""
|
|
67
|
|
|
|
|
68
|
|
|
@property
|
|
69
|
|
|
def som_layer(self):
|
|
70
|
|
|
"""!
|
|
71
|
|
|
@brief The first layer of the oscillatory network - self-organized feature map.
|
|
72
|
|
|
|
|
73
|
|
|
"""
|
|
74
|
|
|
return self._som;
|
|
75
|
|
|
|
|
76
|
|
|
|
|
77
|
|
|
@property
|
|
78
|
|
|
def sync_layer(self):
|
|
79
|
|
|
"""!
|
|
80
|
|
|
@brief The second layer of the oscillatory network based on Kuramoto model.
|
|
81
|
|
|
|
|
82
|
|
|
"""
|
|
83
|
|
|
return self._sync;
|
|
84
|
|
|
|
|
85
|
|
|
|
|
86
|
|
|
def __init__(self, data, rows, cols, radius):
|
|
87
|
|
|
"""!
|
|
88
|
|
|
@brief Constructor of the double layer oscillatory network SYNC-SOM.
|
|
89
|
|
|
|
|
90
|
|
|
@param[in] data (list): Input data that is presented as list of points (objects), each point should be represented by list or tuple.
|
|
91
|
|
|
@param[in] rows (uint): Rows of neurons (number of neurons in column) in the input layer (self-organized feature map).
|
|
92
|
|
|
@param[in] cols (uint): Columns of neurons (number of neurons in row) in the input later (self-organized feature map).
|
|
93
|
|
|
@param[in] radius (double): Connectivity radius between objects that defines connection between oscillators in the second layer.
|
|
94
|
|
|
|
|
95
|
|
|
"""
|
|
96
|
|
|
|
|
97
|
|
|
self._data = data;
|
|
98
|
|
|
self._radius = radius * radius;
|
|
99
|
|
|
|
|
100
|
|
|
self._som = som(rows, cols, conn_type = type_conn.grid_four); # The first (input) later - SOM layer.
|
|
101
|
|
|
self._som_osc_table = list();
|
|
102
|
|
|
|
|
103
|
|
|
self._sync = None; # The second (output) layer - Sync layer.
|
|
104
|
|
|
self._struct = None; # Structure of connections between oscillators in the second layer - Sync layer.
|
|
105
|
|
|
|
|
106
|
|
|
# For convenience
|
|
107
|
|
|
self._analyser = None;
|
|
108
|
|
|
|
|
109
|
|
|
|
|
110
|
|
|
def process(self, collect_dynamic = False, order = 0.999):
|
|
111
|
|
|
"""!
|
|
112
|
|
|
@brief Performs simulation of the oscillatory network.
|
|
113
|
|
|
|
|
114
|
|
|
@param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics.
|
|
115
|
|
|
@param[in] order (double): Order of process synchronization that should be considered as end of clustering, destributed 0..1.
|
|
116
|
|
|
|
|
117
|
|
|
@return (tuple) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time,
|
|
118
|
|
|
otherwise returns only last values (last step of simulation) of dynamic.
|
|
119
|
|
|
|
|
120
|
|
|
@see get_som_clusters()
|
|
121
|
|
|
@see get_clusters()
|
|
122
|
|
|
"""
|
|
123
|
|
|
|
|
124
|
|
|
# train self-organization map.
|
|
125
|
|
|
self._som.train(self._data, 100);
|
|
126
|
|
|
|
|
127
|
|
|
# prepare to build list.
|
|
128
|
|
|
weights = list();
|
|
129
|
|
|
self._som_osc_table.clear(); # must be cleared, if it's used before.
|
|
130
|
|
|
for i in range(self._som.size):
|
|
131
|
|
|
if (self._som.awards[i] > 0):
|
|
132
|
|
|
weights.append(self._som.weights[i]);
|
|
133
|
|
|
self._som_osc_table.append(i);
|
|
134
|
|
|
|
|
135
|
|
|
# create oscillatory neural network.
|
|
136
|
|
|
self._sync = self.__create_sync_layer(weights);
|
|
137
|
|
|
self._analyser = self._sync.process(order, collect_dynamic = collect_dynamic);
|
|
138
|
|
|
|
|
139
|
|
|
return (self._analyser.time, self._analyser.output);
|
|
140
|
|
|
|
|
141
|
|
|
|
|
142
|
|
|
def __create_sync_layer(self, weights):
|
|
143
|
|
|
"""!
|
|
144
|
|
|
@brief Creates second layer of the network.
|
|
145
|
|
|
|
|
146
|
|
|
@param[in] weights (list): List of weights of SOM neurons.
|
|
147
|
|
|
|
|
148
|
|
|
@return (syncnet) Second layer of the network.
|
|
149
|
|
|
|
|
150
|
|
|
"""
|
|
151
|
|
|
sync_layer = syncnet(weights, 0.0, initial_phases = initial_type.RANDOM_GAUSSIAN);
|
|
152
|
|
|
|
|
153
|
|
|
for oscillator_index1 in range(0, len(sync_layer)):
|
|
154
|
|
|
for oscillator_index2 in range(oscillator_index1 + 1, len(sync_layer)):
|
|
155
|
|
|
if (self.__has_object_connection(oscillator_index1, oscillator_index2)):
|
|
156
|
|
|
sync_layer.set_connection(oscillator_index1, oscillator_index2);
|
|
157
|
|
|
|
|
158
|
|
|
return sync_layer;
|
|
159
|
|
|
|
|
160
|
|
|
|
|
161
|
|
|
def __has_object_connection(self, oscillator_index1, oscillator_index2):
|
|
162
|
|
|
"""!
|
|
163
|
|
|
@brief Searches for pair of objects that are encoded by specified neurons and that are connected in line with connectivity radius.
|
|
164
|
|
|
|
|
165
|
|
|
@param[in] oscillator_index1 (uint): Index of the first oscillator in the second layer.
|
|
166
|
|
|
@param[in] oscillator_index2 (uint): Index of the second oscillator in the second layer.
|
|
167
|
|
|
|
|
168
|
|
|
@return (bool) True - if there is pair of connected objects encoded by specified oscillators.
|
|
169
|
|
|
|
|
170
|
|
|
"""
|
|
171
|
|
|
som_neuron_index1 = self._som_osc_table[oscillator_index1];
|
|
172
|
|
|
som_neuron_index2 = self._som_osc_table[oscillator_index2];
|
|
173
|
|
|
|
|
174
|
|
|
for index_object1 in self._som.capture_objects[som_neuron_index1]:
|
|
175
|
|
|
for index_object2 in self._som.capture_objects[som_neuron_index2]:
|
|
176
|
|
|
distance = euclidean_distance_sqrt(self._data[index_object1], self._data[index_object2]);
|
|
177
|
|
|
if (distance <= self._radius):
|
|
178
|
|
|
return True;
|
|
179
|
|
|
|
|
180
|
|
|
return False;
|
|
181
|
|
|
|
|
182
|
|
|
|
|
183
|
|
|
def get_som_clusters(self, eps = 0.1):
|
|
|
|
|
|
|
184
|
|
|
"""!
|
|
185
|
|
|
@brief Returns clusters with SOM neurons that encode input features in line with result of synchronization in the second (Sync) layer.
|
|
186
|
|
|
|
|
187
|
|
|
@param[in] eps (double): Maximum error for allocation of synchronous ensemble oscillators.
|
|
188
|
|
|
|
|
189
|
|
|
@return (list) List of clusters that are represented by lists of indexes of neurons that encode input data.
|
|
190
|
|
|
|
|
191
|
|
|
@see process()
|
|
192
|
|
|
@see get_clusters()
|
|
193
|
|
|
|
|
194
|
|
|
"""
|
|
195
|
|
|
|
|
196
|
|
|
sync_clusters = self._analyser.allocate_clusters();
|
|
197
|
|
|
|
|
198
|
|
|
# Decode it to indexes of SOM neurons
|
|
199
|
|
|
som_clusters = list();
|
|
200
|
|
|
for oscillators in sync_clusters:
|
|
201
|
|
|
cluster = list();
|
|
202
|
|
|
for index_oscillator in oscillators:
|
|
203
|
|
|
index_neuron = self._som_osc_table[index_oscillator];
|
|
204
|
|
|
cluster.append(index_neuron);
|
|
205
|
|
|
|
|
206
|
|
|
som_clusters.append(cluster);
|
|
207
|
|
|
|
|
208
|
|
|
return som_clusters;
|
|
209
|
|
|
|
|
210
|
|
|
|
|
211
|
|
|
def get_clusters(self, eps = 0.1):
|
|
212
|
|
|
"""!
|
|
213
|
|
|
@brief Returns clusters in line with ensembles of synchronous oscillators where each synchronous ensemble corresponds to only one cluster.
|
|
214
|
|
|
|
|
215
|
|
|
@param[in] eps (double): Maximum error for allocation of synchronous ensemble oscillators.
|
|
216
|
|
|
|
|
217
|
|
|
@return (list) List of grours (lists) of indexes of synchronous oscillators that corresponds to index of objects.
|
|
218
|
|
|
|
|
219
|
|
|
@see process()
|
|
220
|
|
|
@see get_som_clusters()
|
|
221
|
|
|
|
|
222
|
|
|
"""
|
|
223
|
|
|
|
|
224
|
|
|
sync_clusters = self._analyser.allocate_clusters(eps); # it isn't indexes of SOM neurons
|
|
225
|
|
|
|
|
226
|
|
|
clusters = list();
|
|
227
|
|
|
total_winners = 0;
|
|
|
|
|
|
|
228
|
|
|
total_number_points = 0;
|
|
|
|
|
|
|
229
|
|
|
for oscillators in sync_clusters:
|
|
230
|
|
|
cluster = list();
|
|
231
|
|
|
for index_oscillator in oscillators:
|
|
232
|
|
|
index_neuron = self._som_osc_table[index_oscillator];
|
|
233
|
|
|
|
|
234
|
|
|
cluster += self._som.capture_objects[index_neuron];
|
|
235
|
|
|
total_number_points += len(self._som.capture_objects[index_neuron]);
|
|
236
|
|
|
total_winners += 1;
|
|
237
|
|
|
|
|
238
|
|
|
clusters.append(cluster);
|
|
239
|
|
|
|
|
240
|
|
|
return clusters;
|
|
241
|
|
|
|
|
242
|
|
|
|
|
243
|
|
|
def show_som_layer(self):
|
|
244
|
|
|
"""!
|
|
245
|
|
|
@brief Shows visual representation of the first (SOM) layer.
|
|
246
|
|
|
|
|
247
|
|
|
"""
|
|
248
|
|
|
|
|
249
|
|
|
self._som.show_network();
|
|
250
|
|
|
|
|
251
|
|
|
|
|
252
|
|
|
def show_sync_layer(self):
|
|
253
|
|
|
"""!
|
|
254
|
|
|
@brief Shows visual representation of the second (Sync) layer.
|
|
255
|
|
|
|
|
256
|
|
|
"""
|
|
257
|
|
|
|
|
258
|
|
|
self._sync.show_network();
|
|
259
|
|
|
|