1
|
|
|
"""!
|
2
|
|
|
|
3
|
|
|
@brief Cluster analysis algorithm: BANG.
|
4
|
|
|
@details Implementation based on paper @cite inproceedings::bang::1.
|
5
|
|
|
|
6
|
|
|
@authors Andrei Novikov ([email protected])
|
7
|
|
|
@date 2014-2018
|
8
|
|
|
@copyright GNU Public License
|
9
|
|
|
|
10
|
|
|
@cond GNU_PUBLIC_LICENSE
|
11
|
|
|
PyClustering is free software: you can redistribute it and/or modify
|
12
|
|
|
it under the terms of the GNU General Public License as published by
|
13
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
14
|
|
|
(at your option) any later version.
|
15
|
|
|
|
16
|
|
|
PyClustering is distributed in the hope that it will be useful,
|
17
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
18
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
19
|
|
|
GNU General Public License for more details.
|
20
|
|
|
|
21
|
|
|
You should have received a copy of the GNU General Public License
|
22
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
23
|
|
|
@endcond
|
24
|
|
|
|
25
|
|
|
"""
|
26
|
|
|
|
27
|
|
|
|
28
|
|
|
import matplotlib
|
|
|
|
|
29
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
30
|
|
|
import matplotlib.patches as patches
|
|
|
|
|
31
|
|
|
|
32
|
|
|
from pyclustering.utils import data_corners
|
33
|
|
|
|
34
|
|
|
from pyclustering.cluster import cluster_visualizer
|
35
|
|
|
|
36
|
|
|
|
37
|
|
|
class bang_visualizer:
|
38
|
|
|
"""!
|
39
|
|
|
@brief Visualizer of BANG algorithm's results.
|
40
|
|
|
@details BANG visualizer provides visualization services that are specific for BANG algorithm.
|
41
|
|
|
|
42
|
|
|
"""
|
43
|
|
|
|
44
|
|
|
|
45
|
|
|
__maximum_density_alpha = 0.6
|
46
|
|
|
|
47
|
|
|
|
48
|
|
|
@staticmethod
|
49
|
|
|
def show_blocks(data, directory):
|
50
|
|
|
"""!
|
51
|
|
|
@brief Show BANG-blocks (leafs only) in data space.
|
52
|
|
|
@details BANG-blocks represents grid that was used for clustering process.
|
53
|
|
|
|
54
|
|
|
@param[in] data (list): Input data space that contains points where each point is also represented by list.
|
55
|
|
|
@param[in] directory (bang_directory): Directory that was created by BANG algorithm during clustering process.
|
56
|
|
|
|
57
|
|
|
"""
|
58
|
|
|
visualizer = cluster_visualizer()
|
59
|
|
|
visualizer.append_cluster(data)
|
60
|
|
|
|
61
|
|
|
figure = visualizer.show(display=False)
|
62
|
|
|
|
63
|
|
|
bang_visualizer.__draw_blocks(figure, 0, directory.get_leafs())
|
64
|
|
|
plt.show()
|
65
|
|
|
|
66
|
|
|
|
67
|
|
|
@staticmethod
|
68
|
|
|
def __draw_blocks(figure, ax_index, blocks):
|
69
|
|
|
"""!
|
70
|
|
|
@brief Display BANG-blocks on specified figure.
|
71
|
|
|
|
72
|
|
|
@param[in] figure (figure): Figure that is used for drawing blocks.
|
73
|
|
|
@param[in] ax_index (uint): Index of axis where blocks should be displayed.
|
74
|
|
|
@param[in] blocks (list): List of blocks that should be displyed.
|
75
|
|
|
|
76
|
|
|
"""
|
77
|
|
|
ax = figure.get_axes()[ax_index]
|
78
|
|
|
ax.grid(False)
|
79
|
|
|
|
80
|
|
|
density_scale = blocks[-1].get_density()
|
81
|
|
|
for block in blocks:
|
82
|
|
|
bang_visualizer.__draw_block(ax, block, density_scale)
|
83
|
|
|
|
84
|
|
|
|
85
|
|
|
@staticmethod
|
86
|
|
|
def __draw_block(ax, block, density_scale):
|
87
|
|
|
"""!
|
88
|
|
|
@brief Display BANG-block on the specified ax.
|
89
|
|
|
|
90
|
|
|
@param[in] ax (Axis): Axis where block should be displayed.
|
91
|
|
|
@param[in] block (bang_block): BANG-block that should be displayed.
|
92
|
|
|
@param[in] density_scale (double): Max density to display density of the block by appropriate tone.
|
93
|
|
|
|
94
|
|
|
"""
|
95
|
|
|
max_corner, min_corner = block.get_spatial_block().get_corners()
|
96
|
|
|
belong_cluster = block.get_cluster() is not None
|
97
|
|
|
|
98
|
|
|
density_scale = bang_visualizer.__maximum_density_alpha * block.get_density() / density_scale
|
99
|
|
|
|
100
|
|
|
face_color = matplotlib.colors.to_rgba('blue', alpha=density_scale)
|
101
|
|
|
edge_color = matplotlib.colors.to_rgba('black', alpha=1.0)
|
102
|
|
|
|
103
|
|
|
if len(max_corner) == 2:
|
104
|
|
|
rect = patches.Rectangle(min_corner, max_corner[0] - min_corner[0], max_corner[1] - min_corner[1],
|
105
|
|
|
fill=belong_cluster,
|
106
|
|
|
facecolor=face_color,
|
107
|
|
|
edgecolor=edge_color,
|
108
|
|
|
linewidth=0.5)
|
109
|
|
|
ax.add_patch(rect)
|
110
|
|
|
|
111
|
|
|
else:
|
112
|
|
|
raise ValueError("Impossible to display blocks on non-2D dimensional data.")
|
113
|
|
|
|
114
|
|
|
|
115
|
|
|
|
116
|
|
|
class bang_directory:
|
117
|
|
|
"""!
|
118
|
|
|
@brief BANG directory stores BANG-blocks that represents grid in data space.
|
119
|
|
|
@details The directory build BANG-blocks in binary tree manner. Leafs of the tree stored separately to provide
|
120
|
|
|
a direct access to the leafs that should be analysed. Leafs cache data-points.
|
121
|
|
|
|
122
|
|
|
"""
|
123
|
|
|
def __init__(self, data, levels, density_threshold=0.0):
|
124
|
|
|
"""!
|
125
|
|
|
@brief Create BANG directory - basically tree structure with direct access to leafs.
|
126
|
|
|
|
127
|
|
|
@param[in] levels (uint): Height of the blocks tree.
|
128
|
|
|
@param[in] density_threshold (double): The lowest level of density when contained data by bang-block is
|
129
|
|
|
considered as a noise and there is no need to split it till the last level.
|
130
|
|
|
|
131
|
|
|
"""
|
132
|
|
|
self.__data = data
|
133
|
|
|
self.__levels = levels
|
134
|
|
|
self.__density_threshold = density_threshold
|
135
|
|
|
self.__leafs = []
|
136
|
|
|
self.__root = None
|
137
|
|
|
|
138
|
|
|
self.__create_directory()
|
139
|
|
|
|
140
|
|
|
|
141
|
|
|
def get_leafs(self):
|
142
|
|
|
"""!
|
143
|
|
|
@brief Return leafs - the smallest blocks.
|
144
|
|
|
@details Some leafs can be bigger than others because splitting is not performed for blocks whose density is
|
145
|
|
|
less than threshold.
|
146
|
|
|
|
147
|
|
|
@return (list) List of blocks that are leafs of BANG directory.
|
148
|
|
|
|
149
|
|
|
"""
|
150
|
|
|
return self.__leafs
|
151
|
|
|
|
152
|
|
|
|
153
|
|
|
def __create_directory(self):
|
154
|
|
|
"""!
|
155
|
|
|
@brief Create BANG directory as a tree with separate storage for leafs.
|
156
|
|
|
|
157
|
|
|
"""
|
158
|
|
|
|
159
|
|
|
min_corner, max_corner = data_corners(self.__data)
|
160
|
|
|
data_block = spatial_block(max_corner, min_corner)
|
161
|
|
|
|
162
|
|
|
cache_require = (self.__levels == 1)
|
163
|
|
|
self.__root = bang_block(self.__data, 0, 0, data_block, cache_require)
|
164
|
|
|
|
165
|
|
|
if cache_require:
|
166
|
|
|
self.__leafs.append(self.__root)
|
167
|
|
|
else:
|
168
|
|
|
self.__build_directory_levels()
|
169
|
|
|
|
170
|
|
|
|
171
|
|
|
def __build_directory_levels(self):
|
172
|
|
|
"""!
|
173
|
|
|
@brief Build levels of direction if amount of level is greater than one.
|
174
|
|
|
|
175
|
|
|
"""
|
176
|
|
|
previous_level_blocks = [ self.__root ]
|
177
|
|
|
for level in range(1, self.__levels):
|
178
|
|
|
previous_level_blocks = self.__build_level(previous_level_blocks, level)
|
179
|
|
|
|
180
|
|
|
self.__leafs = sorted(self.__leafs, key=lambda block: block.get_density())
|
181
|
|
|
|
182
|
|
|
|
183
|
|
|
def __build_level(self, previous_level_blocks, level):
|
184
|
|
|
"""!
|
185
|
|
|
@brief Build new level of directory.
|
186
|
|
|
|
187
|
|
|
@param[in] previous_level_blocks (list): BANG-blocks on the previous level.
|
188
|
|
|
@param[in] level (uint): Level number that should be built.
|
189
|
|
|
|
190
|
|
|
@return (list) New block on the specified level.
|
191
|
|
|
|
192
|
|
|
"""
|
193
|
|
|
current_level_blocks = []
|
194
|
|
|
|
195
|
|
|
split_dimension = level % len(self.__data[0])
|
196
|
|
|
cache_require = (level == self.__levels - 1)
|
197
|
|
|
|
198
|
|
|
for block in previous_level_blocks:
|
199
|
|
|
self.__split_block(block, split_dimension, cache_require, current_level_blocks)
|
200
|
|
|
|
201
|
|
|
if cache_require:
|
202
|
|
|
self.__leafs += current_level_blocks
|
203
|
|
|
|
204
|
|
|
return current_level_blocks
|
205
|
|
|
|
206
|
|
|
|
207
|
|
|
def __split_block(self, block, split_dimension, cache_require, current_level_blocks):
|
208
|
|
|
"""!
|
209
|
|
|
@brief Split specific block in specified dimension.
|
210
|
|
|
@details Split is not performed for block whose density is lower than threshold value, such blocks are putted to
|
211
|
|
|
leafs.
|
212
|
|
|
|
213
|
|
|
@param[in] block (bang_block): BANG-block that should be split.
|
214
|
|
|
@param[in] split_dimension (uint): Dimension at which splitting should be performed.
|
215
|
|
|
@param[in] cache_require (bool): Defines when points in cache should be stored during density calculation.
|
216
|
|
|
@param[in|out] current_level_blocks (list): Block storage at the current level where new blocks should be added.
|
217
|
|
|
|
218
|
|
|
"""
|
219
|
|
|
if block.get_density() <= self.__density_threshold:
|
220
|
|
|
self.__leafs.append(block)
|
221
|
|
|
|
222
|
|
|
else:
|
223
|
|
|
left, right = block.split(split_dimension, cache_require)
|
224
|
|
|
current_level_blocks.append(left)
|
225
|
|
|
current_level_blocks.append(right)
|
226
|
|
|
|
227
|
|
|
|
228
|
|
|
|
229
|
|
|
class spatial_block:
|
230
|
|
|
"""!
|
231
|
|
|
@brief Geometrical description of BANG block in data space.
|
232
|
|
|
@details Provides services related to spatial function and used by bang_block
|
233
|
|
|
|
234
|
|
|
@see bang_block
|
235
|
|
|
|
236
|
|
|
"""
|
237
|
|
|
|
238
|
|
|
def __init__(self, max_corner, min_corner):
|
239
|
|
|
"""!
|
240
|
|
|
@brief Creates spatial block in data space.
|
241
|
|
|
|
242
|
|
|
@param[in] max_corner (array_like): Maximum corner coordinates of the block.
|
243
|
|
|
@param[in] min_corner (array_like): Minimal corner coordinates of the block.
|
244
|
|
|
|
245
|
|
|
"""
|
246
|
|
|
self.__max_corner = max_corner
|
247
|
|
|
self.__min_corner = min_corner
|
248
|
|
|
self.__volume = self.__calculate_volume()
|
249
|
|
|
|
250
|
|
|
|
251
|
|
|
def __str__(self):
|
252
|
|
|
"""!
|
253
|
|
|
@brief Returns string block description.
|
254
|
|
|
|
255
|
|
|
@return String representation of the block.
|
256
|
|
|
|
257
|
|
|
"""
|
258
|
|
|
return "(max: %s; min: %s)" % (self.__max_corner, self.__min_corner)
|
259
|
|
|
|
260
|
|
|
|
261
|
|
|
def __contains__(self, point):
|
262
|
|
|
"""!
|
263
|
|
|
@brief Point is considered as contained if it lies in block (belong to it).
|
264
|
|
|
|
265
|
|
|
@return (bool) True if point is in block, otherwise False.
|
266
|
|
|
|
267
|
|
|
"""
|
268
|
|
|
for i in range(len(point)):
|
269
|
|
|
if point[i] < self.__min_corner[i] or point[i] > self.__max_corner[i]:
|
270
|
|
|
return False
|
271
|
|
|
|
272
|
|
|
return True
|
273
|
|
|
|
274
|
|
|
|
275
|
|
|
def get_corners(self):
|
276
|
|
|
"""!
|
277
|
|
|
@brief Return spatial description of current block.
|
278
|
|
|
|
279
|
|
|
@return (tuple) Pair of maximum and minimum corners (max_corner, min_corner).
|
280
|
|
|
|
281
|
|
|
"""
|
282
|
|
|
return self.__max_corner, self.__min_corner
|
283
|
|
|
|
284
|
|
|
|
285
|
|
|
def get_volume(self):
|
286
|
|
|
"""!
|
287
|
|
|
@brief Returns volume of current block.
|
288
|
|
|
@details Volume block has uncommon mining here: for 1D is length of a line, for 2D is square of rectangle,
|
289
|
|
|
for 3D is volume of 3D figure, and for ND is volume of ND figure.
|
290
|
|
|
|
291
|
|
|
@return (double) Volume of current block.
|
292
|
|
|
|
293
|
|
|
"""
|
294
|
|
|
return self.__volume
|
295
|
|
|
|
296
|
|
|
|
297
|
|
|
def split(self, dimension):
|
298
|
|
|
"""!
|
299
|
|
|
@brief Split current block into two spatial blocks in specified dimension.
|
300
|
|
|
|
301
|
|
|
@param[in] dimension (uint): Dimension where current block should be split.
|
302
|
|
|
|
303
|
|
|
@return (tuple) Pair of new split blocks from current block.
|
304
|
|
|
|
305
|
|
|
"""
|
306
|
|
|
first_max_corner = self.__max_corner[:]
|
307
|
|
|
second_min_corner = self.__min_corner[:]
|
308
|
|
|
|
309
|
|
|
split_border = (self.__max_corner[dimension] + self.__min_corner[dimension]) / 2.0
|
310
|
|
|
|
311
|
|
|
first_max_corner[dimension] = split_border
|
312
|
|
|
second_min_corner[dimension] = split_border
|
313
|
|
|
|
314
|
|
|
return spatial_block(first_max_corner, self.__min_corner), spatial_block(self.__max_corner, second_min_corner)
|
315
|
|
|
|
316
|
|
|
|
317
|
|
|
def is_neighbor(self, block):
|
318
|
|
|
"""!
|
319
|
|
|
@brief Performs calculation to identify whether specified block is neighbor of current block.
|
320
|
|
|
|
321
|
|
|
@param[in] block (spatial_block): Another block that is check whether it is neighbor.
|
322
|
|
|
|
323
|
|
|
@return (bool) True is blocks are neighbors, False otherwise.
|
324
|
|
|
|
325
|
|
|
"""
|
326
|
|
|
if block is not self:
|
327
|
|
|
block_max_corner, _ = block.get_corners()
|
328
|
|
|
dimension = len(block_max_corner)
|
329
|
|
|
neighborhood_score = self.__calculate_neighborhood(block_max_corner)
|
330
|
|
|
|
331
|
|
|
if neighborhood_score == dimension:
|
332
|
|
|
return True
|
333
|
|
|
|
334
|
|
|
return False
|
335
|
|
|
|
336
|
|
|
|
337
|
|
|
def __calculate_neighborhood(self, block_max_corner):
|
338
|
|
|
"""!
|
339
|
|
|
@brief Calculates neighborhood score that defined whether blocks are neighbors.
|
340
|
|
|
|
341
|
|
|
@param[in] block_max_corner (list): Maximum coordinates of other block.
|
342
|
|
|
|
343
|
|
|
@return (uint) Neighborhood score.
|
344
|
|
|
|
345
|
|
|
"""
|
346
|
|
|
dimension = len(block_max_corner)
|
347
|
|
|
|
348
|
|
|
length_edges = [self.__max_corner[i] - self.__min_corner[i] for i in range(dimension)]
|
349
|
|
|
|
350
|
|
|
neighborhood_score = 0
|
351
|
|
|
for i in range(dimension):
|
352
|
|
|
diff = abs(block_max_corner[i] - self.__max_corner[i])
|
353
|
|
|
|
354
|
|
|
if diff <= length_edges[i] + length_edges[i] * 0.0001:
|
355
|
|
|
neighborhood_score += 1
|
356
|
|
|
|
357
|
|
|
return neighborhood_score
|
358
|
|
|
|
359
|
|
|
|
360
|
|
|
def __calculate_volume(self):
|
361
|
|
|
"""!
|
362
|
|
|
@brief Calculates volume of current spatial block.
|
363
|
|
|
|
364
|
|
|
@return (double) Volume of current spatial block.
|
365
|
|
|
|
366
|
|
|
"""
|
367
|
|
|
volume = self.__max_corner[0] - self.__min_corner[0]
|
368
|
|
|
for i in range(1, len(self.__max_corner)):
|
369
|
|
|
volume *= self.__max_corner[i] - self.__min_corner[i]
|
370
|
|
|
|
371
|
|
|
return volume
|
372
|
|
|
|
373
|
|
|
|
374
|
|
|
|
375
|
|
|
class bang_block:
|
376
|
|
|
"""!
|
377
|
|
|
@brief BANG-block that represent spatial region in data space.
|
378
|
|
|
|
379
|
|
|
"""
|
380
|
|
|
def __init__(self, data, region, level, space_block, cache_points=False):
|
381
|
|
|
self.__data = data
|
382
|
|
|
self.__region_number = region
|
383
|
|
|
self.__level = level
|
384
|
|
|
self.__spatial_block = space_block
|
385
|
|
|
self.__cache_points = cache_points
|
386
|
|
|
|
387
|
|
|
self.__cluster = None
|
388
|
|
|
self.__points = None
|
389
|
|
|
self.__density = self.__calculate_density()
|
390
|
|
|
|
391
|
|
|
|
392
|
|
|
def __str__(self):
|
393
|
|
|
return "(" + str(self.__region_number) + ", " + str(self.__level) + ")"
|
394
|
|
|
|
395
|
|
|
|
396
|
|
|
def get_region(self):
|
397
|
|
|
"""!
|
398
|
|
|
@brief Returns region number of BANG-block.
|
399
|
|
|
@details Region number is unique on among region numbers on a directory level. Pair of region number and level
|
400
|
|
|
is unique for all directory.
|
401
|
|
|
|
402
|
|
|
@return (uint) Region number.
|
403
|
|
|
|
404
|
|
|
"""
|
405
|
|
|
return self.__region_number
|
406
|
|
|
|
407
|
|
|
|
408
|
|
|
def get_density(self):
|
409
|
|
|
"""!
|
410
|
|
|
@brief Returns density of the BANG-block.
|
411
|
|
|
|
412
|
|
|
@return (double) BANG-block density.
|
413
|
|
|
|
414
|
|
|
"""
|
415
|
|
|
return self.__density
|
416
|
|
|
|
417
|
|
|
|
418
|
|
|
def get_cluster(self):
|
419
|
|
|
"""!
|
420
|
|
|
@brief Return index of cluster to which the BANG-block belongs to.
|
421
|
|
|
@details Index of cluster may have None value if the block was not assigned to any cluster.
|
422
|
|
|
|
423
|
|
|
@return (uint) Index of cluster or None if the block does not belong to any cluster.
|
424
|
|
|
|
425
|
|
|
"""
|
426
|
|
|
return self.__cluster
|
427
|
|
|
|
428
|
|
|
|
429
|
|
|
def get_spatial_block(self):
|
430
|
|
|
"""!
|
431
|
|
|
@brief Return spatial block - BANG-block description in data space.
|
432
|
|
|
|
433
|
|
|
@return (spatial_block) Spatial block of the BANG-block.
|
434
|
|
|
|
435
|
|
|
"""
|
436
|
|
|
return self.__spatial_block
|
437
|
|
|
|
438
|
|
|
|
439
|
|
|
def get_points(self):
|
440
|
|
|
"""!
|
441
|
|
|
@brief Return points that covers by the BANG-block.
|
442
|
|
|
@details Returns None if block is not leaf.
|
443
|
|
|
|
444
|
|
|
@return (list) List of point indexes that are covered by the block.
|
445
|
|
|
|
446
|
|
|
"""
|
447
|
|
|
return self.__points
|
448
|
|
|
|
449
|
|
|
|
450
|
|
|
def set_cluster(self, index):
|
451
|
|
|
"""!
|
452
|
|
|
@brief Assign cluster to the BANG-block by index.
|
453
|
|
|
|
454
|
|
|
@param[in] index (uint): Index cluster that is assigned to BANG-block.
|
455
|
|
|
|
456
|
|
|
"""
|
457
|
|
|
self.__cluster = index
|
458
|
|
|
|
459
|
|
|
|
460
|
|
|
def is_neighbor(self, block):
|
461
|
|
|
"""!
|
462
|
|
|
@brief Performs calculation to check whether specified block is neighbor to the current.
|
463
|
|
|
|
464
|
|
|
@param[in] block (bang_block): Other BANG-block that should be checked for neighborhood.
|
465
|
|
|
|
466
|
|
|
@return (bool) True if blocks are neighbors, False if blocks are not neighbors.
|
467
|
|
|
|
468
|
|
|
"""
|
469
|
|
|
return self.get_spatial_block().is_neighbor(block.get_spatial_block())
|
470
|
|
|
|
471
|
|
|
|
472
|
|
|
def split(self, split_dimension, cache_points):
|
473
|
|
|
"""!
|
474
|
|
|
@brief Split BANG-block into two new blocks in specified dimension.
|
475
|
|
|
|
476
|
|
|
@param[in] split_dimension (uint): Dimension where block should be split.
|
477
|
|
|
@param[in] cache_points (bool): If True then covered points are cached. Used for leaf blocks.
|
478
|
|
|
|
479
|
|
|
@return (tuple) Pair of BANG-block that were formed from the current.
|
480
|
|
|
|
481
|
|
|
"""
|
482
|
|
|
left_region_number = self.__region_number
|
483
|
|
|
right_region_number = self.__region_number + 2 ** self.__level
|
484
|
|
|
|
485
|
|
|
first_spatial_block, second_spatial_block = self.__spatial_block.split(split_dimension)
|
486
|
|
|
|
487
|
|
|
left = bang_block(self.__data, left_region_number, self.__level + 1, first_spatial_block, cache_points)
|
488
|
|
|
right = bang_block(self.__data, right_region_number, self.__level + 1, second_spatial_block, cache_points)
|
489
|
|
|
|
490
|
|
|
return left, right
|
491
|
|
|
|
492
|
|
|
|
493
|
|
|
def __calculate_density(self):
|
494
|
|
|
"""!
|
495
|
|
|
@brief Calculates BANG-block density.
|
496
|
|
|
|
497
|
|
|
@return (double) BANG-block density.
|
498
|
|
|
|
499
|
|
|
"""
|
500
|
|
|
return self.__get_amount_points() / self.__spatial_block.get_volume()
|
501
|
|
|
|
502
|
|
|
|
503
|
|
|
def __get_amount_points(self):
|
504
|
|
|
"""!
|
505
|
|
|
@brief Count covered points by the BANG-block and if cache is enable then covered points are stored.
|
506
|
|
|
|
507
|
|
|
@return (uint) Amount of covered points.
|
508
|
|
|
|
509
|
|
|
"""
|
510
|
|
|
amount = 0
|
511
|
|
|
for index in range(len(self.__data)):
|
512
|
|
|
if self.__data[index] in self.__spatial_block:
|
513
|
|
|
self.__cache_point(index)
|
514
|
|
|
amount += 1
|
515
|
|
|
|
516
|
|
|
return amount
|
517
|
|
|
|
518
|
|
|
|
519
|
|
|
def __cache_point(self, index):
|
520
|
|
|
"""!
|
521
|
|
|
@brief Store index points.
|
522
|
|
|
|
523
|
|
|
@param[in] index (uint): Index point that should be stored.
|
524
|
|
|
|
525
|
|
|
"""
|
526
|
|
|
if self.__cache_points:
|
527
|
|
|
if self.__points is None:
|
528
|
|
|
self.__points = []
|
529
|
|
|
|
530
|
|
|
self.__points.append(index)
|
531
|
|
|
|
532
|
|
|
|
533
|
|
|
|
534
|
|
|
class bang:
|
535
|
|
|
def __init__(self, data, levels, density_threshold = 0.0):
|
536
|
|
|
self.__data = data
|
537
|
|
|
self.__levels = levels
|
538
|
|
|
self.__directory = None
|
539
|
|
|
self.__clusters = []
|
540
|
|
|
self.__noise = []
|
541
|
|
|
self.__cluster_blocks = []
|
542
|
|
|
self.__density_threshold = density_threshold
|
543
|
|
|
|
544
|
|
|
|
545
|
|
|
def process(self):
|
546
|
|
|
self.__validate_arguments()
|
547
|
|
|
|
548
|
|
|
self.__directory = bang_directory(self.__data, self.__levels, self.__density_threshold)
|
549
|
|
|
self.__allocate_clusters()
|
550
|
|
|
|
551
|
|
|
|
552
|
|
|
def get_clusters(self):
|
553
|
|
|
return self.__clusters
|
554
|
|
|
|
555
|
|
|
|
556
|
|
|
def get_noise(self):
|
557
|
|
|
return self.__noise
|
558
|
|
|
|
559
|
|
|
|
560
|
|
|
def get_directory(self):
|
561
|
|
|
return self.__directory
|
562
|
|
|
|
563
|
|
|
|
564
|
|
|
def __validate_arguments(self):
|
565
|
|
|
if self.__levels <= 0:
|
566
|
|
|
raise ValueError("Incorrect amount of levels '%d'. Level value should be greater than 0." % self.__levels)
|
567
|
|
|
|
568
|
|
|
if len(self.__data) == 0:
|
569
|
|
|
raise ValueError("Empty input data. Data should contain at least one point.")
|
570
|
|
|
|
571
|
|
|
if self.__density_threshold < 0:
|
572
|
|
|
raise ValueError("Incorrect density threshold '%f'. Density threshold should not be negative." % self.__density_threshold)
|
573
|
|
|
|
574
|
|
|
|
575
|
|
|
def __allocate_clusters(self):
|
576
|
|
|
leaf_blocks = self.__directory.get_leafs()
|
577
|
|
|
unhandled_block_indexes = set([i for i in range(len(leaf_blocks)) if leaf_blocks[i].get_density() > self.__density_threshold])
|
578
|
|
|
appropriate_block_indexes = set(unhandled_block_indexes)
|
579
|
|
|
|
580
|
|
|
current_block = self.__find_block_center(leaf_blocks)
|
581
|
|
|
cluster_index = 0
|
582
|
|
|
|
583
|
|
|
while current_block is not None:
|
584
|
|
|
if current_block.get_density() <= self.__density_threshold:
|
585
|
|
|
break
|
586
|
|
|
|
587
|
|
|
self.__expand_cluster_block(current_block, cluster_index, leaf_blocks, unhandled_block_indexes)
|
588
|
|
|
|
589
|
|
|
current_block = self.__find_block_center(leaf_blocks)
|
590
|
|
|
cluster_index += 1
|
591
|
|
|
|
592
|
|
|
self.__store_clustering_results(cluster_index, appropriate_block_indexes, leaf_blocks)
|
593
|
|
|
|
594
|
|
|
|
595
|
|
|
def __expand_cluster_block(self, block, cluster_index, leaf_blocks, unhandled_block_indexes):
|
596
|
|
|
block.set_cluster(cluster_index)
|
597
|
|
|
|
598
|
|
|
neighbors = self.__find_block_neighbors(block, leaf_blocks, unhandled_block_indexes)
|
599
|
|
|
for neighbor in neighbors:
|
600
|
|
|
neighbor.set_cluster(cluster_index)
|
601
|
|
|
neighbors += self.__find_block_neighbors(neighbor, leaf_blocks, unhandled_block_indexes)
|
602
|
|
|
|
603
|
|
|
|
604
|
|
|
def __store_clustering_results(self, amount_clusters, appropriate_block_indexes, leaf_blocks):
|
605
|
|
|
self.__clusters = [[] for _ in range(amount_clusters)]
|
606
|
|
|
for appropriate_index in appropriate_block_indexes:
|
607
|
|
|
block = leaf_blocks[appropriate_index]
|
608
|
|
|
index = block.get_cluster()
|
609
|
|
|
|
610
|
|
|
if index is not None:
|
611
|
|
|
self.__clusters[index] += block.get_points()
|
612
|
|
|
else:
|
613
|
|
|
self.__noise += block.get_points()
|
614
|
|
|
|
615
|
|
|
self.__clusters = [ list(set(cluster)) for cluster in self.__clusters ]
|
616
|
|
|
self.__noise = list(set(self.__noise))
|
617
|
|
|
|
618
|
|
|
|
619
|
|
|
def __find_block_center(self, level_blocks):
|
620
|
|
|
for i in reversed(range(len(level_blocks))):
|
621
|
|
|
if level_blocks[i].get_cluster() is None:
|
622
|
|
|
return level_blocks[i]
|
623
|
|
|
|
624
|
|
|
return None
|
625
|
|
|
|
626
|
|
|
|
627
|
|
|
def __find_block_neighbors(self, block, level_blocks, unhandled_block_indexes):
|
628
|
|
|
neighbors = []
|
629
|
|
|
|
630
|
|
|
handled_block_indexes = []
|
631
|
|
|
for unhandled_index in unhandled_block_indexes:
|
632
|
|
|
if block.is_neighbor(level_blocks[unhandled_index]):
|
633
|
|
|
handled_block_indexes.append(unhandled_index)
|
634
|
|
|
neighbors.append(level_blocks[unhandled_index])
|
635
|
|
|
|
636
|
|
|
# Maximum number of neighbors is eight
|
637
|
|
|
if len(neighbors) == 8:
|
638
|
|
|
break
|
639
|
|
|
|
640
|
|
|
for handled_index in handled_block_indexes:
|
641
|
|
|
unhandled_block_indexes.remove(handled_index)
|
642
|
|
|
|
643
|
|
|
return neighbors
|
644
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.