| Total Complexity | 67 |
| Total Lines | 360 |
| Duplicated Lines | 0 % |
Complex classes like kdtree often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """! |
||
| 93 | class kdtree: |
||
| 94 | """! |
||
| 95 | @brief Represents KD Tree. |
||
| 96 | |||
| 97 | """ |
||
| 98 | |||
| 99 | __root = None; |
||
| 100 | __dimension = None; |
||
| 101 | |||
| 102 | def __init__(self, data_list = None, payload_list = None): |
||
| 103 | """! |
||
| 104 | @brief Create kd-tree from list of points and from according list of payloads. |
||
| 105 | @details If lists were not specified then empty kd-tree will be created. |
||
| 106 | |||
| 107 | @param[in] data_list (list): Insert points from the list to created KD tree. |
||
| 108 | @param[in] payload_list (list): Insert payload from the list to created KD tree, length should be equal to length of data_list if it is specified. |
||
| 109 | |||
| 110 | """ |
||
| 111 | |||
| 112 | if (data_list is None): |
||
| 113 | return; # Just return from here, tree can be filled by insert method later |
||
| 114 | |||
| 115 | if (payload_list is None): |
||
| 116 | # Case when payload is not specified. |
||
| 117 | for index in range(0, len(data_list)): |
||
| 118 | self.insert(data_list[index], None); |
||
| 119 | else: |
||
| 120 | # Case when payload is specified. |
||
| 121 | for index in range(0, len(data_list)): |
||
| 122 | self.insert(data_list[index], payload_list[index]); |
||
| 123 | |||
| 124 | |||
| 125 | def insert(self, point, payload): |
||
| 126 | """! |
||
| 127 | @brief Insert new point with payload to kd-tree. |
||
| 128 | |||
| 129 | @param[in] point (list): Coordinates of the point of inserted node. |
||
| 130 | @param[in] payload (*): Payload of inserted node. |
||
| 131 | |||
| 132 | """ |
||
| 133 | |||
| 134 | if (self.__root is None): |
||
| 135 | self.__dimension = len(point); |
||
| 136 | self.__root = node(point, payload, None, None, 0); |
||
| 137 | return self.__root; |
||
| 138 | |||
| 139 | cur_node = self.__root; |
||
| 140 | |||
| 141 | while True: |
||
| 142 | if (cur_node.data[cur_node.disc] <= point[cur_node.disc]): |
||
| 143 | # If new node is greater or equal than current node then check right leaf |
||
| 144 | if (cur_node.right is None): |
||
| 145 | discriminator = cur_node.disc + 1; |
||
| 146 | if (discriminator >= self.__dimension): |
||
| 147 | discriminator = 0; |
||
| 148 | |||
| 149 | cur_node.right = node(point, payload, None, None, discriminator, cur_node); |
||
| 150 | return cur_node.right; |
||
| 151 | else: |
||
| 152 | cur_node = cur_node.right; |
||
| 153 | |||
| 154 | else: |
||
| 155 | # If new node is less than current then check left leaf |
||
| 156 | if (cur_node.left is None): |
||
| 157 | discriminator = cur_node.disc + 1; |
||
| 158 | if (discriminator >= self.__dimension): |
||
| 159 | discriminator = 0; |
||
| 160 | |||
| 161 | cur_node.left = node(point, payload, None, None, discriminator, cur_node); |
||
| 162 | return cur_node.left; |
||
| 163 | else: |
||
| 164 | cur_node = cur_node.left; |
||
| 165 | |||
| 166 | |||
| 167 | def remove(self, point): |
||
| 168 | """! |
||
| 169 | @brief Remove specified point from kd-tree. |
||
| 170 | |||
| 171 | @param[in] point (list): Coordinates of the point of removed node. |
||
| 172 | |||
| 173 | @return (node) Root if node has been successfully removed, otherwise None. |
||
| 174 | |||
| 175 | """ |
||
| 176 | |||
| 177 | # Get required node |
||
| 178 | node_for_remove = self.find_node(point); |
||
| 179 | if (node_for_remove is None): |
||
| 180 | return None; |
||
| 181 | |||
| 182 | parent = node_for_remove.parent; |
||
| 183 | node = self.__recursive_remove(node_for_remove); |
||
| 184 | if (parent is None): |
||
| 185 | self.__root = node; |
||
| 186 | |||
| 187 | # If all k-d tree was destroyed |
||
| 188 | if (node is not None): |
||
| 189 | node.parent = None; |
||
| 190 | else: |
||
| 191 | if (parent.left is node_for_remove): |
||
| 192 | parent.left = node; |
||
| 193 | elif (parent.right is node_for_remove): |
||
| 194 | parent.right = node; |
||
| 195 | else: |
||
| 196 | assert 0; # FATAL ERROR |
||
| 197 | |||
| 198 | return self.__root; |
||
| 199 | |||
| 200 | |||
| 201 | def __recursive_remove(self, node): |
||
| 202 | """! |
||
| 203 | @brief Delete node and return root of subtree. |
||
| 204 | |||
| 205 | @param[in] node (node): Node that should be removed. |
||
| 206 | |||
| 207 | @return (node) Minimal node in line with coordinate that is defined by descriminator. |
||
| 208 | |||
| 209 | """ |
||
| 210 | |||
| 211 | # Check if it is leaf |
||
| 212 | if ( (node.right is None) and (node.left is None) ): |
||
| 213 | return None; |
||
| 214 | |||
| 215 | discriminator = node.disc; |
||
| 216 | |||
| 217 | # Check if only left branch exist |
||
| 218 | if (node.right is None): |
||
| 219 | node.right = node.left; |
||
| 220 | node.left = None; |
||
| 221 | |||
| 222 | # Find minimal node in line with coordinate that is defined by discriminator |
||
| 223 | minimal_node = self.find_minimal_node(node.right, discriminator); |
||
| 224 | parent = minimal_node.parent; |
||
| 225 | |||
| 226 | if (parent.left is minimal_node): |
||
| 227 | parent.left = self.__recursive_remove(minimal_node); |
||
| 228 | elif (parent.right is minimal_node): |
||
| 229 | parent.right = self.__recursive_remove(minimal_node); |
||
| 230 | else: |
||
| 231 | assert 0; |
||
| 232 | |||
| 233 | minimal_node.parent = node.parent; |
||
| 234 | minimal_node.disc = node.disc; |
||
| 235 | minimal_node.right = node.right; |
||
| 236 | minimal_node.left = node.left; |
||
| 237 | |||
| 238 | # Update parent for successors of previous parent. |
||
| 239 | if (minimal_node.right is not None): |
||
| 240 | minimal_node.right.parent = minimal_node; |
||
| 241 | |||
| 242 | if (minimal_node.left is not None): |
||
| 243 | minimal_node.left.parent = minimal_node; |
||
| 244 | |||
| 245 | return minimal_node; |
||
| 246 | |||
| 247 | |||
| 248 | def find_minimal_node(self, node, discriminator): |
||
| 249 | """! |
||
| 250 | @brief Find minimal node in line with coordinate that is defined by discriminator. |
||
| 251 | |||
| 252 | @param[in] node (node): Node of KD tree from that search should be started. |
||
| 253 | @param[in] discriminator (uint): Coordinate number that is used for comparison. |
||
| 254 | |||
| 255 | @return (node) Minimal node in line with descriminator from the specified node. |
||
| 256 | |||
| 257 | """ |
||
| 258 | |||
| 259 | min_key = lambda cur_node: cur_node.data[discriminator]; |
||
| 260 | stack = []; |
||
| 261 | candidates = []; |
||
| 262 | isFinished = False; |
||
| 263 | while isFinished is False: |
||
| 264 | if node is not None: |
||
| 265 | stack.append(node); |
||
| 266 | node = node.left; |
||
| 267 | else: |
||
| 268 | if len(stack) != 0: |
||
| 269 | node = stack.pop(); |
||
| 270 | candidates.append(node); |
||
| 271 | node = node.right; |
||
| 272 | else: |
||
| 273 | isFinished = True; |
||
| 274 | |||
| 275 | return min(candidates, key = min_key); |
||
| 276 | |||
| 277 | |||
| 278 | def find_node(self, point, cur_node = None): |
||
| 279 | """! |
||
| 280 | @brief Find node with coordinates that are defined by specified point. |
||
| 281 | @details If node does not exist then None will be returned. Otherwise required node will be returned. |
||
| 282 | |||
| 283 | @param[in] point (list): Coordinates of the point whose node should be found. |
||
| 284 | @param[in] cur_node (node): Node from which search should be started. |
||
| 285 | |||
| 286 | @return (node) Node in case of existance of node with specified coordinates, otherwise it return None. |
||
| 287 | |||
| 288 | """ |
||
| 289 | |||
| 290 | req_node = None; |
||
| 291 | |||
| 292 | if (cur_node is None): |
||
| 293 | cur_node = self.__root; |
||
| 294 | |||
| 295 | while True: |
||
| 296 | if (cur_node.data[cur_node.disc] <= point[cur_node.disc]): |
||
| 297 | # Check if it's required node |
||
| 298 | if (cur_node.data == point): |
||
| 299 | req_node = cur_node; |
||
| 300 | break; |
||
| 301 | |||
| 302 | if (cur_node.right is not None): |
||
| 303 | cur_node = cur_node.right; |
||
| 304 | else: |
||
| 305 | assert 0 |
||
| 306 | |||
| 307 | else: |
||
| 308 | if (cur_node.left is not None): |
||
| 309 | cur_node = cur_node.left; |
||
| 310 | else: |
||
| 311 | assert 0 |
||
| 312 | |||
| 313 | return req_node; |
||
| 314 | |||
| 315 | |||
| 316 | |||
| 317 | def find_nearest_dist_node(self, point, distance, retdistance = False): |
||
| 318 | """! |
||
| 319 | @brief Find nearest neighbor in area with radius = distance. |
||
| 320 | |||
| 321 | @param[in] point (list): Maximum distance where neighbors are searched. |
||
| 322 | @param[in] distance (double): Maximum distance where neighbors are searched. |
||
| 323 | @param[in] retdistance (bool): If True - returns neighbors with distances to them, otherwise only neighbors is returned. |
||
| 324 | |||
| 325 | @return (list) Neighbors, if redistance is True then neighbors with distances to them will be returned. |
||
| 326 | |||
| 327 | """ |
||
| 328 | |||
| 329 | best_nodes = self.find_nearest_dist_nodes(point, distance); |
||
| 330 | |||
| 331 | if (best_nodes == []): |
||
| 332 | return None; |
||
| 333 | |||
| 334 | nearest = min(best_nodes, key = lambda item: item[0]); |
||
| 335 | |||
| 336 | if (retdistance == True): |
||
| 337 | return nearest; |
||
| 338 | else: |
||
| 339 | return nearest[1]; |
||
| 340 | |||
| 341 | |||
| 342 | def find_nearest_dist_nodes(self, point, distance): |
||
| 343 | """! |
||
| 344 | @brief Find neighbors that are located in area that is covered by specified distance. |
||
| 345 | |||
| 346 | @param[in] point (list): Coordinates that is considered as centroind for searching. |
||
| 347 | @param[in] distance (double): Distance from the center where seaching is performed. |
||
| 348 | |||
| 349 | @return (list) Neighbors in area that is specified by point (center) and distance (radius). |
||
| 350 | |||
| 351 | """ |
||
| 352 | |||
| 353 | best_nodes = []; |
||
| 354 | self.__recursive_nearest_nodes(point, distance, distance ** 2, self.__root, best_nodes); |
||
| 355 | |||
| 356 | return best_nodes; |
||
| 357 | |||
| 358 | |||
| 359 | def __recursive_nearest_nodes(self, point, distance, sqrt_distance, node, best_nodes): |
||
| 360 | """! |
||
| 361 | @brief Returns list of neighbors such as tuple (distance, node) that is located in area that is covered by distance. |
||
| 362 | |||
| 363 | @param[in] point (list): Coordinates that is considered as centroind for searching |
||
| 364 | @param[in] distance (double): Distance from the center where seaching is performed. |
||
| 365 | @param[in] sqrt_distance (double): Square distance from the center where searching is performed. |
||
| 366 | @param[in] node (node): Node from that searching is performed. |
||
| 367 | @param[in|out] best_nodes (list): List of founded nodes. |
||
| 368 | |||
| 369 | """ |
||
| 370 | |||
| 371 | minimum = node.data[node.disc] - distance; |
||
| 372 | maximum = node.data[node.disc] + distance; |
||
| 373 | |||
| 374 | if (node.right is not None): |
||
| 375 | if (point[node.disc] >= minimum): |
||
| 376 | self.__recursive_nearest_nodes(point, distance, sqrt_distance, node.right, best_nodes); |
||
| 377 | |||
| 378 | if (node.left is not None): |
||
| 379 | if (point[node.disc] < maximum): |
||
| 380 | self.__recursive_nearest_nodes(point, distance, sqrt_distance, node.left, best_nodes); |
||
| 381 | |||
| 382 | candidate_distance = euclidean_distance_sqrt(point, node.data); |
||
| 383 | if (candidate_distance <= sqrt_distance): |
||
| 384 | best_nodes.append( (candidate_distance, node) ); |
||
| 385 | |||
| 386 | |||
| 387 | def children(self, node): |
||
| 388 | """! |
||
| 389 | @brief Returns list of children of node. |
||
| 390 | |||
| 391 | @param[in] node (node): Node whose children are required. |
||
| 392 | |||
| 393 | @return (list) Children of node. If node haven't got any child then None is returned. |
||
| 394 | |||
| 395 | """ |
||
| 396 | |||
| 397 | if (node.left is not None): |
||
| 398 | yield node.left; |
||
| 399 | if (node.right is not None): |
||
| 400 | yield node.right; |
||
| 401 | |||
| 402 | |||
| 403 | def traverse(self, start_node = None, level = None): |
||
| 404 | """! |
||
| 405 | @brief Traverses all nodes of subtree that is defined by node specified in input parameter. |
||
| 406 | |||
| 407 | @param[in] start_node (node): Node from that travering of subtree is performed. |
||
| 408 | @param[in, out] level (uint): Should be ignored by application. |
||
| 409 | |||
| 410 | @return (list) All nodes of the subtree. |
||
| 411 | |||
| 412 | """ |
||
| 413 | |||
| 414 | if (start_node is None): |
||
| 415 | start_node = self.__root; |
||
| 416 | level = 0; |
||
| 417 | |||
| 418 | if (start_node is None): |
||
| 419 | return []; |
||
| 420 | |||
| 421 | items = [ (level, start_node) ]; |
||
| 422 | for child in self.children(start_node): |
||
| 423 | if child is not None: |
||
| 424 | items += self.traverse(child, level + 1); |
||
| 425 | |||
| 426 | return items; |
||
| 427 | |||
| 428 | |||
| 429 | def show(self): |
||
| 430 | """! |
||
| 431 | @brief Display tree on the console. |
||
| 432 | |||
| 433 | """ |
||
| 434 | |||
| 435 | nodes = self.traverse(); |
||
| 436 | if (nodes == []): |
||
| 437 | return; |
||
| 438 | |||
| 439 | nodes.sort(key = lambda item: item[0]); |
||
| 440 | |||
| 441 | level = nodes[0]; |
||
| 442 | string = ""; |
||
| 443 | for item in nodes: |
||
| 444 | if (level == item[0]): |
||
| 445 | string += str(item[1]) + "\t"; |
||
| 446 | |||
| 447 | else: |
||
| 448 | print(string); |
||
| 449 | level = item[0]; |
||
| 450 | string = str(item[1]) + "\t"; |
||
| 451 | |||
| 452 | print(string); |
||
| 453 |
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.pyfiles in your module folders. Make sure that you place one file in each sub-folder.