|
1
|
|
|
"""! |
|
2
|
|
|
|
|
3
|
|
|
@brief Genetic algorithm math API. |
|
4
|
|
|
|
|
5
|
|
|
@authors Aleksey Kukushkin ([email protected]) |
|
6
|
|
|
@date 2014-2017 |
|
7
|
|
|
@copyright GNU Public License |
|
8
|
|
|
|
|
9
|
|
|
@cond GNU_PUBLIC_LICENSE |
|
10
|
|
|
PyClustering is free software: you can redistribute it and/or modify |
|
11
|
|
|
it under the terms of the GNU General Public License as published by |
|
12
|
|
|
the Free Software Foundation, either version 3 of the License, or |
|
13
|
|
|
(at your option) any later version. |
|
14
|
|
|
|
|
15
|
|
|
PyClustering is distributed in the hope that it will be useful, |
|
16
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
17
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
18
|
|
|
GNU General Public License for more details. |
|
19
|
|
|
|
|
20
|
|
|
You should have received a copy of the GNU General Public License |
|
21
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
22
|
|
|
@endcond |
|
23
|
|
|
|
|
24
|
|
|
""" |
|
25
|
|
|
|
|
26
|
|
|
|
|
27
|
|
|
import numpy as np; |
|
|
|
|
|
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
|
|
class ga_math: |
|
31
|
|
|
""" |
|
32
|
|
|
@brief Genetic algorithm math API. |
|
33
|
|
|
|
|
34
|
|
|
""" |
|
35
|
|
|
|
|
36
|
|
|
@staticmethod |
|
37
|
|
|
def calc_count_centers(chromosome): |
|
38
|
|
|
return chromosome[chromosome.argmax()] + 1 |
|
39
|
|
|
|
|
40
|
|
|
@staticmethod |
|
41
|
|
|
def get_clusters_representation(chromosome, count_clusters=None): |
|
42
|
|
|
""" Convert chromosome to cluster representation: |
|
43
|
|
|
chromosome : [0, 1, 1, 0, 2, 3, 3] |
|
44
|
|
|
clusters: [[0, 3], [1, 2], [4], [5, 6]] |
|
45
|
|
|
""" |
|
46
|
|
|
|
|
47
|
|
|
if count_clusters is None: |
|
48
|
|
|
count_clusters = ga_math.calc_count_centers(chromosome) |
|
49
|
|
|
|
|
50
|
|
|
# Initialize empty clusters |
|
51
|
|
|
clusters = [[] for _ in range(count_clusters)] |
|
52
|
|
|
|
|
53
|
|
|
# Fill clusters with index of data |
|
54
|
|
|
for _idx_data in range(len(chromosome)): |
|
55
|
|
|
clusters[chromosome[_idx_data]].append(_idx_data) |
|
56
|
|
|
|
|
57
|
|
|
return clusters |
|
58
|
|
|
|
|
59
|
|
|
@staticmethod |
|
60
|
|
|
def get_centres(chromosomes, data, count_clusters): |
|
61
|
|
|
"""! |
|
62
|
|
|
""" |
|
63
|
|
|
|
|
64
|
|
|
centres = ga_math.calc_centers(chromosomes, data, count_clusters) |
|
65
|
|
|
|
|
66
|
|
|
return centres |
|
67
|
|
|
|
|
68
|
|
|
@staticmethod |
|
69
|
|
|
def calc_centers(chromosomes, data, count_clusters=None): |
|
70
|
|
|
"""! |
|
71
|
|
|
""" |
|
72
|
|
|
|
|
73
|
|
|
if count_clusters is None: |
|
74
|
|
|
count_clusters = ga_math.calc_count_centers(chromosomes[0]) |
|
75
|
|
|
|
|
76
|
|
|
# Initialize center |
|
77
|
|
|
centers = np.zeros(shape=(len(chromosomes), count_clusters, len(data[0]))) |
|
78
|
|
|
|
|
79
|
|
|
for _idx_chromosome in range(len(chromosomes)): |
|
80
|
|
|
|
|
81
|
|
|
# Get count data in clusters |
|
82
|
|
|
count_data_in_cluster = np.zeros(count_clusters) |
|
83
|
|
|
|
|
84
|
|
|
# Next data point |
|
85
|
|
|
for _idx in range(len(chromosomes[_idx_chromosome])): |
|
86
|
|
|
|
|
87
|
|
|
cluster_num = chromosomes[_idx_chromosome][_idx] |
|
88
|
|
|
|
|
89
|
|
|
centers[_idx_chromosome][cluster_num] += data[_idx] |
|
90
|
|
|
count_data_in_cluster[cluster_num] += 1 |
|
91
|
|
|
|
|
92
|
|
|
for _idx_cluster in range(count_clusters): |
|
93
|
|
|
if count_data_in_cluster[_idx_cluster] != 0: |
|
94
|
|
|
centers[_idx_chromosome][_idx_cluster] /= count_data_in_cluster[_idx_cluster] |
|
95
|
|
|
|
|
96
|
|
|
return centers |
|
97
|
|
|
|
|
98
|
|
|
@staticmethod |
|
99
|
|
|
def calc_probability_vector(fitness): |
|
100
|
|
|
"""! |
|
101
|
|
|
""" |
|
102
|
|
|
|
|
103
|
|
|
if len(fitness) == 0: |
|
104
|
|
|
raise AttributeError("Has no any fitness functions.") |
|
105
|
|
|
|
|
106
|
|
|
# Get 1/fitness function |
|
107
|
|
|
inv_fitness = np.zeros(len(fitness)) |
|
108
|
|
|
|
|
109
|
|
|
# |
|
110
|
|
|
for _idx in range(len(inv_fitness)): |
|
111
|
|
|
|
|
112
|
|
|
if fitness[_idx] != 0.0: |
|
113
|
|
|
inv_fitness[_idx] = 1.0 / fitness[_idx] |
|
114
|
|
|
else: |
|
115
|
|
|
inv_fitness[_idx] = 0.0 |
|
116
|
|
|
|
|
117
|
|
|
# Initialize vector |
|
118
|
|
|
prob = np.zeros(len(fitness)) |
|
119
|
|
|
|
|
120
|
|
|
# Initialize first element |
|
121
|
|
|
prob[0] = inv_fitness[0] |
|
122
|
|
|
|
|
123
|
|
|
# Accumulate values in probability vector |
|
124
|
|
|
for _idx in range(1, len(inv_fitness)): |
|
125
|
|
|
prob[_idx] = prob[_idx - 1] + inv_fitness[_idx] |
|
126
|
|
|
|
|
127
|
|
|
# Normalize |
|
128
|
|
|
prob /= prob[-1] |
|
129
|
|
|
|
|
130
|
|
|
ga_math.set_last_value_to_one(prob) |
|
131
|
|
|
|
|
132
|
|
|
return prob |
|
133
|
|
|
|
|
134
|
|
|
@staticmethod |
|
135
|
|
|
def set_last_value_to_one(probabilities): |
|
136
|
|
|
"""! |
|
137
|
|
|
@brief Update the last same probabilities to one. |
|
138
|
|
|
@details All values of probability list equals to the last element are set to 1. |
|
139
|
|
|
|
|
140
|
|
|
""" |
|
141
|
|
|
|
|
142
|
|
|
# Start from the last elem |
|
143
|
|
|
back_idx = - 1 |
|
144
|
|
|
|
|
145
|
|
|
# All values equal to the last elem should be set to 1 |
|
146
|
|
|
last_val = probabilities[back_idx] |
|
147
|
|
|
|
|
148
|
|
|
# for all elements or if a elem not equal to the last elem |
|
149
|
|
|
for _ in range(-1, -len(probabilities) - 1): |
|
150
|
|
|
if probabilities[back_idx] == last_val: |
|
151
|
|
|
probabilities[back_idx] = 1 |
|
152
|
|
|
else: |
|
153
|
|
|
break |
|
154
|
|
|
|
|
155
|
|
|
@staticmethod |
|
156
|
|
|
def get_uniform(probabilities): |
|
157
|
|
|
"""! |
|
158
|
|
|
@brief Returns index in probabilities. |
|
159
|
|
|
|
|
160
|
|
|
@param[in] probabilities (list): List with segments in increasing sequence with val in [0, 1], |
|
161
|
|
|
for example, [0 0.1 0.2 0.3 1.0]. |
|
162
|
|
|
""" |
|
163
|
|
|
|
|
164
|
|
|
# Initialize return value |
|
165
|
|
|
res_idx = None |
|
166
|
|
|
|
|
167
|
|
|
# Get random num in range [0, 1) |
|
168
|
|
|
random_num = np.random.rand() |
|
169
|
|
|
|
|
170
|
|
|
# Find segment with val1 < random_num < val2 |
|
171
|
|
|
for _idx in range(len(probabilities)): |
|
172
|
|
|
if random_num < probabilities[_idx]: |
|
173
|
|
|
res_idx = _idx |
|
174
|
|
|
break |
|
175
|
|
|
|
|
176
|
|
|
if res_idx is None: |
|
177
|
|
|
print('Probabilities : ', probabilities) |
|
178
|
|
|
raise AttributeError("'probabilities' should contain 1 as the end of last segment(s)") |
|
179
|
|
|
|
|
180
|
|
|
return res_idx |
|
181
|
|
|
|
|
182
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.pyfiles in your module folders. Make sure that you place one file in each sub-folder.