Completed
Push — master ( af3192...a7eabf )
by Andrei
02:20
created

dbscan.__neighbor_indexes_distance_matrix()   A

Complexity

Conditions 4

Size

Total Lines 12

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 4
dl 0
loc 12
rs 9.2
c 0
b 0
f 0
1
"""!
2
3
@brief Cluster analysis algorithm: DBSCAN.
4
@details Implementation based on article:
5
         - M.Ester, H.Kriegel, J.Sander, X.Xiaowei. A density-based algorithm for discovering clusters in large spatial databases with noise. 1996.
6
7
@authors Andrei Novikov ([email protected])
8
@date 2014-2018
9
@copyright GNU Public License
10
11
@cond GNU_PUBLIC_LICENSE
12
    PyClustering is free software: you can redistribute it and/or modify
13
    it under the terms of the GNU General Public License as published by
14
    the Free Software Foundation, either version 3 of the License, or
15
    (at your option) any later version.
16
    
17
    PyClustering is distributed in the hope that it will be useful,
18
    but WITHOUT ANY WARRANTY; without even the implied warranty of
19
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20
    GNU General Public License for more details.
21
    
22
    You should have received a copy of the GNU General Public License
23
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
24
@endcond
25
26
"""
27
28
29
from enum import IntEnum;
0 ignored issues
show
Unused Code introduced by
Unused IntEnum imported from enum
Loading history...
30
31
from pyclustering.container.kdtree import kdtree;
32
33
from pyclustering.cluster.encoder import type_encoding;
34
35
from pyclustering.core.wrapper import ccore_library;
36
37
from pyclustering.utils import get_argument;
0 ignored issues
show
Unused Code introduced by
Unused get_argument imported from pyclustering.utils
Loading history...
38
39
import pyclustering.core.dbscan_wrapper as wrapper;
40
41
42
class dbscan:
43
    """!
44
    @brief Class represents clustering algorithm DBSCAN.
45
    @details This DBSCAN algorithm is KD-tree optimized.
46
             
47
             CCORE option can be used to use the pyclustering core - C/C++ shared library for processing that significantly increases performance.
48
    
49
    Example:
50
    @code
51
        # sample for cluster analysis (represented by list)
52
        sample = read_sample(path_to_sample);
53
        
54
        # create object that uses CCORE for processing
55
        dbscan_instance = dbscan(sample, 0.5, 3, True);
56
        
57
        # cluster analysis
58
        dbscan_instance.process();
59
        
60
        # obtain results of clustering
61
        clusters = dbscan_instance.get_clusters();
62
        noise = dbscan_instance.get_noise();
63
    @endcode
64
    
65
    """
66
    
67
    def __init__(self, data, eps, neighbors, ccore = True, **kwargs):
68
        """!
69
        @brief Constructor of clustering algorithm DBSCAN.
70
        
71
        @param[in] data (list): Input data that is presented as list of points (objects), each point should be represented by list or tuple.
72
        @param[in] eps (double): Connectivity radius between points, points may be connected if distance between them less then the radius.
73
        @param[in] neighbors (uint): minimum number of shared neighbors that is required for establish links between points.
74
        @param[in] ccore (bool): if True than DLL CCORE (C++ solution) will be used for solving the problem.
75
        @param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'data_type').
76
77
        <b>Keyword Args:</b><br>
78
            - data_type (string): Data type of input sample 'data' that is processed by the algorithm ('points', 'distance_matrix').
79
        
80
        """
81
        
82
        self.__pointer_data = data;
83
        self.__kdtree = None;
84
        self.__eps = eps;
85
        self.__sqrt_eps = eps * eps;
86
        self.__neighbors = neighbors;
87
        
88
        self.__visited = [False] * len(self.__pointer_data);
89
        self.__belong = [False] * len(self.__pointer_data);
90
91
        self.__data_type = kwargs.get('data_type', 'points');
92
93
        self.__clusters = [];
94
        self.__noise = [];
95
96
        self.__neighbor_searcher = self.__create_neighbor_searcher(self.__data_type);
97
98
        self.__ccore = ccore;
99
        if self.__ccore:
100
            self.__ccore = ccore_library.workable();
101
102
103
    def process(self):
104
        """!
105
        @brief Performs cluster analysis in line with rules of DBSCAN algorithm.
106
        
107
        @see get_clusters()
108
        @see get_noise()
109
        
110
        """
111
        
112
        if self.__ccore is True:
113
            (self.__clusters, self.__noise) = wrapper.dbscan(self.__pointer_data, self.__eps, self.__neighbors, self.__data_type);
114
            
115
        else:
116
            if self.__data_type == 'points':
117
                self.__kdtree = kdtree(self.__pointer_data, range(len(self.__pointer_data)));
118
119
            for i in range(0, len(self.__pointer_data)):
120
                if self.__visited[i] is False:
121
                     
122
                    cluster = self.__expand_cluster(i);
123
                    if cluster is not None:
124
                        self.__clusters.append(cluster);
125
                    else:
126
                        self.__noise.append(i);
127
                        self.__belong[i] = True;
128
129
130
    def get_clusters(self):
131
        """!
132
        @brief Returns allocated clusters.
133
        
134
        @remark Allocated clusters can be returned only after data processing (use method process()). Otherwise empty list is returned.
135
        
136
        @return (list) List of allocated clusters, each cluster contains indexes of objects in list of data.
137
        
138
        @see process()
139
        @see get_noise()
140
        
141
        """
142
        
143
        return self.__clusters;
144
145
146
    def get_noise(self):
147
        """!
148
        @brief Returns allocated noise.
149
        
150
        @remark Allocated noise can be returned only after data processing (use method process() before). Otherwise empty list is returned.
151
        
152
        @return (list) List of indexes that are marked as a noise.
153
        
154
        @see process()
155
        @see get_clusters()
156
        
157
        """
158
159
        return self.__noise;
160
161
162
    def get_cluster_encoding(self):
163
        """!
164
        @brief Returns clustering result representation type that indicate how clusters are encoded.
165
        
166
        @return (type_encoding) Clustering result representation.
167
        
168
        @see get_clusters()
169
        
170
        """
171
        
172
        return type_encoding.CLUSTER_INDEX_LIST_SEPARATION;
173
174
175
    def __create_neighbor_searcher(self, data_type):
176
        """!
177
        @brief Returns neighbor searcher in line with data type.
178
179
        @param[in] data_type (string): Data type (points or distance matrix).
180
181
        """
182
        if data_type == 'points':
183
            return self.__neighbor_indexes_points;
184
        elif data_type == 'distance_matrix':
185
            return self.__neighbor_indexes_distance_matrix;
186
        else:
187
            raise TypeError("Unknown type of data is specified '%s'" % data_type);
188
189
190
    def __expand_cluster(self, index_point):
191
        """!
192
        @brief Expands cluster from specified point in the input data space.
193
        
194
        @param[in] index_point (list): Index of a point from the data.
195
196
        @return (list) Return tuple of list of indexes that belong to the same cluster and list of points that are marked as noise: (cluster, noise), or None if nothing has been expanded.
197
        
198
        """
199
        
200
        cluster = None;
201
        self.__visited[index_point] = True;
202
        neighbors = self.__neighbor_searcher(index_point);
203
         
204
        if len(neighbors) >= self.__neighbors:
205
            cluster = [ index_point ];
206
             
207
            self.__belong[index_point] = True;
208
             
209
            for i in neighbors:
210
                if self.__visited[i] is False:
211
                    self.__visited[i] = True;
212
                    next_neighbors = self.__neighbor_searcher(i);
213
                     
214
                    if len(next_neighbors) >= self.__neighbors:
215
                        # if some node has less then minimal number of neighbors than we shouldn't look at them
216
                        # because maybe it's a noise.
217
                        neighbors += [k for k in next_neighbors if ( (k in neighbors) == False)];
218
                 
219
                if self.__belong[i] is False:
220
                    cluster.append(i);
221
                    self.__belong[i] = True;
222
             
223
        return cluster;
224
225
226
    def __neighbor_indexes_points(self, index_point):
227
        """!
228
        @brief Return neighbors of the specified object in case of sequence of points.
229
230
        @param[in] index_point (uint): Index point whose neighbors are should be found.
231
232
        @return (list) List of indexes of neighbors in line the connectivity radius.
233
234
        """
235
        kdnodes = self.__kdtree.find_nearest_dist_nodes(self.__pointer_data[index_point], self.__eps);
236
        return [node_tuple[1].payload for node_tuple in kdnodes if node_tuple[1].payload != index_point];
237
238
239
    def __neighbor_indexes_distance_matrix(self, index_point):
240
        """!
241
        @brief Return neighbors of the specified object in case of distance matrix.
242
243
        @param[in] index_point (uint): Index point whose neighbors are should be found.
244
245
        @return (list) List of indexes of neighbors in line the connectivity radius.
246
247
        """
248
        distances = self.__pointer_data[index_point];
249
        return [index_neighbor for index_neighbor in range(len(distances))
250
                if ((distances[index_neighbor] <= self.__eps) and (index_neighbor != index_point))];